{"title":"高分辨率航拍图像道路检测:一种线性目标检测的位置迭代算法","authors":"Hao He, Shuyang Wang, Qi Yang, Xu Huang, Qian Zhao","doi":"10.1117/12.2644721","DOIUrl":null,"url":null,"abstract":"Detecting roads from high-resolution photographs can serve forestry, agriculture, traffic and even military areas, and produce significant social and economic value. In this paper, we present a novel method that utilizes the flatness and the connectivity to detect the road in high-resolution aerial images. The method iterates the probable locations of the roads by using the flatness and connects the roads by using the connectivity. Firstly, we introduce a concept of ‘footprint’, which reveals the probable location and extension direction of a road. Given an initial footprint, we assess the flatness between locations to search the resulting footprint. By iterating and connecting the footprints, our approach produces a set of connected line segments that reflect the road to be detected. In addition, a footprints initialization algorithm is introduced to make our method totally automatic, and a road network pruning algorithm is designed to make the result clearer and more accurate. Tested under three high-resolution aerial photographs, our method achieved an accuracy of more than 80%. The algorithm is adapted for road detection and still linear target detection in high-resolution aerial photographs. Since the algorithm does not require artificial features or training data, it can be quickly deployed in application.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting roads from high-resolution aerial images: a position iteration algorithm for linear target detection\",\"authors\":\"Hao He, Shuyang Wang, Qi Yang, Xu Huang, Qian Zhao\",\"doi\":\"10.1117/12.2644721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting roads from high-resolution photographs can serve forestry, agriculture, traffic and even military areas, and produce significant social and economic value. In this paper, we present a novel method that utilizes the flatness and the connectivity to detect the road in high-resolution aerial images. The method iterates the probable locations of the roads by using the flatness and connects the roads by using the connectivity. Firstly, we introduce a concept of ‘footprint’, which reveals the probable location and extension direction of a road. Given an initial footprint, we assess the flatness between locations to search the resulting footprint. By iterating and connecting the footprints, our approach produces a set of connected line segments that reflect the road to be detected. In addition, a footprints initialization algorithm is introduced to make our method totally automatic, and a road network pruning algorithm is designed to make the result clearer and more accurate. Tested under three high-resolution aerial photographs, our method achieved an accuracy of more than 80%. The algorithm is adapted for road detection and still linear target detection in high-resolution aerial photographs. Since the algorithm does not require artificial features or training data, it can be quickly deployed in application.\",\"PeriodicalId\":314555,\"journal\":{\"name\":\"International Conference on Digital Image Processing\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Digital Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2644721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting roads from high-resolution aerial images: a position iteration algorithm for linear target detection
Detecting roads from high-resolution photographs can serve forestry, agriculture, traffic and even military areas, and produce significant social and economic value. In this paper, we present a novel method that utilizes the flatness and the connectivity to detect the road in high-resolution aerial images. The method iterates the probable locations of the roads by using the flatness and connects the roads by using the connectivity. Firstly, we introduce a concept of ‘footprint’, which reveals the probable location and extension direction of a road. Given an initial footprint, we assess the flatness between locations to search the resulting footprint. By iterating and connecting the footprints, our approach produces a set of connected line segments that reflect the road to be detected. In addition, a footprints initialization algorithm is introduced to make our method totally automatic, and a road network pruning algorithm is designed to make the result clearer and more accurate. Tested under three high-resolution aerial photographs, our method achieved an accuracy of more than 80%. The algorithm is adapted for road detection and still linear target detection in high-resolution aerial photographs. Since the algorithm does not require artificial features or training data, it can be quickly deployed in application.