基于AntLion优化算法的2型糖尿病预测

A. Sasithradevi, C. Baskar, H. R. Deekshetha, S. Reshma, M. Vijayalakshmi, D. A. Perumal
{"title":"基于AntLion优化算法的2型糖尿病预测","authors":"A. Sasithradevi, C. Baskar, H. R. Deekshetha, S. Reshma, M. Vijayalakshmi, D. A. Perumal","doi":"10.1109/ICIIET55458.2022.9967563","DOIUrl":null,"url":null,"abstract":"Diabetes Mellitus is one of the common diseases prevailing in most developed and developing countries. In recent decades, there has been a huge rise in diabetes patients in India. Based on recent statistics, nearly 72.96 million young people are suffering from diabetes. Thus, it is essential to diagnose diabetes at an early stage. In this work, the PIMA dataset is used to design an optimized and super-vised learning model based on K-nearest neighbor classification. The optimization algorithm used to generate useful features to predict diabetes mellitus is the Antlion optimization algorithm. The proposed work yields an accuracy of 80% for the selected features like Pregnancy, BMI, BP, Age, Glucose, and Diabetes Pedigree Function.","PeriodicalId":341904,"journal":{"name":"2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AntLion Optimization Algorithm based Type II Diabetes Mellitus Prediction\",\"authors\":\"A. Sasithradevi, C. Baskar, H. R. Deekshetha, S. Reshma, M. Vijayalakshmi, D. A. Perumal\",\"doi\":\"10.1109/ICIIET55458.2022.9967563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes Mellitus is one of the common diseases prevailing in most developed and developing countries. In recent decades, there has been a huge rise in diabetes patients in India. Based on recent statistics, nearly 72.96 million young people are suffering from diabetes. Thus, it is essential to diagnose diabetes at an early stage. In this work, the PIMA dataset is used to design an optimized and super-vised learning model based on K-nearest neighbor classification. The optimization algorithm used to generate useful features to predict diabetes mellitus is the Antlion optimization algorithm. The proposed work yields an accuracy of 80% for the selected features like Pregnancy, BMI, BP, Age, Glucose, and Diabetes Pedigree Function.\",\"PeriodicalId\":341904,\"journal\":{\"name\":\"2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIET55458.2022.9967563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIET55458.2022.9967563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是大多数发达国家和发展中国家的常见病之一。近几十年来,印度的糖尿病患者数量大幅上升。根据最近的统计,近7296万年轻人患有糖尿病。因此,早期诊断糖尿病是非常必要的。在这项工作中,使用PIMA数据集设计了一个基于k近邻分类的优化和监督学习模型。用于生成有用特征预测糖尿病的优化算法是Antlion优化算法。所提出的工作对诸如怀孕、BMI、血压、年龄、葡萄糖和糖尿病谱系功能等选定特征的准确率达到80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AntLion Optimization Algorithm based Type II Diabetes Mellitus Prediction
Diabetes Mellitus is one of the common diseases prevailing in most developed and developing countries. In recent decades, there has been a huge rise in diabetes patients in India. Based on recent statistics, nearly 72.96 million young people are suffering from diabetes. Thus, it is essential to diagnose diabetes at an early stage. In this work, the PIMA dataset is used to design an optimized and super-vised learning model based on K-nearest neighbor classification. The optimization algorithm used to generate useful features to predict diabetes mellitus is the Antlion optimization algorithm. The proposed work yields an accuracy of 80% for the selected features like Pregnancy, BMI, BP, Age, Glucose, and Diabetes Pedigree Function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信