{"title":"基于多共振匹配网络的宽带连续类fgan MMIC PA","authors":"G. Nikandish, R. Staszewski, A. Zhu","doi":"10.23919/EuMIC.2019.8909495","DOIUrl":null,"url":null,"abstract":"In this paper, we present a design technique for broadband harmonic-tuned monolithic microwave integrated circuit (MMIC) power amplifiers (PAs). A multi-resonance harmonic matching network is proposed for the continuous class -F mode operation, featuring low loss and compact chip area for integrated PA realization. A design procedure is developed for this network, considering low quality factor and electromigration current density limitation of on-chip inductors. A proof-of-concept GaN MMIC PA, implemented in a 0.25-$\\mu$ m GaN-on-SiC technology, provides 33. 9-36.ldBm output power and 38-48% power-added efficiency (PAE) in the frequency band 4-6GHz. For a 64-QAM signal with 100 MHz modulation bandwidth and 8 dB peak-to-average power ratio (PAPR), at 5 GHz, the average output power of 30.2 dBm and average PAE of 32% are achieved, while the error vector magnitude (EVM) is -32dB.","PeriodicalId":228725,"journal":{"name":"2019 14th European Microwave Integrated Circuits Conference (EuMIC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Broadband Continuous Class-FGaN MMIC PA Using Multi-Resonance Matching Network\",\"authors\":\"G. Nikandish, R. Staszewski, A. Zhu\",\"doi\":\"10.23919/EuMIC.2019.8909495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a design technique for broadband harmonic-tuned monolithic microwave integrated circuit (MMIC) power amplifiers (PAs). A multi-resonance harmonic matching network is proposed for the continuous class -F mode operation, featuring low loss and compact chip area for integrated PA realization. A design procedure is developed for this network, considering low quality factor and electromigration current density limitation of on-chip inductors. A proof-of-concept GaN MMIC PA, implemented in a 0.25-$\\\\mu$ m GaN-on-SiC technology, provides 33. 9-36.ldBm output power and 38-48% power-added efficiency (PAE) in the frequency band 4-6GHz. For a 64-QAM signal with 100 MHz modulation bandwidth and 8 dB peak-to-average power ratio (PAPR), at 5 GHz, the average output power of 30.2 dBm and average PAE of 32% are achieved, while the error vector magnitude (EVM) is -32dB.\",\"PeriodicalId\":228725,\"journal\":{\"name\":\"2019 14th European Microwave Integrated Circuits Conference (EuMIC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th European Microwave Integrated Circuits Conference (EuMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EuMIC.2019.8909495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EuMIC.2019.8909495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Broadband Continuous Class-FGaN MMIC PA Using Multi-Resonance Matching Network
In this paper, we present a design technique for broadband harmonic-tuned monolithic microwave integrated circuit (MMIC) power amplifiers (PAs). A multi-resonance harmonic matching network is proposed for the continuous class -F mode operation, featuring low loss and compact chip area for integrated PA realization. A design procedure is developed for this network, considering low quality factor and electromigration current density limitation of on-chip inductors. A proof-of-concept GaN MMIC PA, implemented in a 0.25-$\mu$ m GaN-on-SiC technology, provides 33. 9-36.ldBm output power and 38-48% power-added efficiency (PAE) in the frequency band 4-6GHz. For a 64-QAM signal with 100 MHz modulation bandwidth and 8 dB peak-to-average power ratio (PAPR), at 5 GHz, the average output power of 30.2 dBm and average PAE of 32% are achieved, while the error vector magnitude (EVM) is -32dB.