加密恶意软件流量分类的机器学习:考虑噪声标签和非平稳性

Blake Anderson, D. McGrew
{"title":"加密恶意软件流量分类的机器学习:考虑噪声标签和非平稳性","authors":"Blake Anderson, D. McGrew","doi":"10.1145/3097983.3098163","DOIUrl":null,"url":null,"abstract":"The application of machine learning for the detection of malicious network traffic has been well researched over the past several decades; it is particularly appealing when the traffic is encrypted because traditional pattern-matching approaches cannot be used. Unfortunately, the promise of machine learning has been slow to materialize in the network security domain. In this paper, we highlight two primary reasons why this is the case: inaccurate ground truth and a highly non-stationary data distribution. To demonstrate and understand the effect that these pitfalls have on popular machine learning algorithms, we design and carry out experiments that show how six common algorithms perform when confronted with real network data. With our experimental results, we identify the situations in which certain classes of algorithms underperform on the task of encrypted malware traffic classification. We offer concrete recommendations for practitioners given the real-world constraints outlined. From an algorithmic perspective, we find that the random forest ensemble method outperformed competing methods. More importantly, feature engineering was decisive; we found that iterating on the initial feature set, and including features suggested by domain experts, had a much greater impact on the performance of the classification system. For example, linear regression using the more expressive feature set easily outperformed the random forest method using a standard network traffic representation on all criteria considered. Our analysis is based on millions of TLS encrypted sessions collected over 12 months from a commercial malware sandbox and two geographically distinct, large enterprise networks.","PeriodicalId":314049,"journal":{"name":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"184","resultStr":"{\"title\":\"Machine Learning for Encrypted Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity\",\"authors\":\"Blake Anderson, D. McGrew\",\"doi\":\"10.1145/3097983.3098163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of machine learning for the detection of malicious network traffic has been well researched over the past several decades; it is particularly appealing when the traffic is encrypted because traditional pattern-matching approaches cannot be used. Unfortunately, the promise of machine learning has been slow to materialize in the network security domain. In this paper, we highlight two primary reasons why this is the case: inaccurate ground truth and a highly non-stationary data distribution. To demonstrate and understand the effect that these pitfalls have on popular machine learning algorithms, we design and carry out experiments that show how six common algorithms perform when confronted with real network data. With our experimental results, we identify the situations in which certain classes of algorithms underperform on the task of encrypted malware traffic classification. We offer concrete recommendations for practitioners given the real-world constraints outlined. From an algorithmic perspective, we find that the random forest ensemble method outperformed competing methods. More importantly, feature engineering was decisive; we found that iterating on the initial feature set, and including features suggested by domain experts, had a much greater impact on the performance of the classification system. For example, linear regression using the more expressive feature set easily outperformed the random forest method using a standard network traffic representation on all criteria considered. Our analysis is based on millions of TLS encrypted sessions collected over 12 months from a commercial malware sandbox and two geographically distinct, large enterprise networks.\",\"PeriodicalId\":314049,\"journal\":{\"name\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"184\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3097983.3098163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097983.3098163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 184

摘要

在过去的几十年里,机器学习在恶意网络流量检测中的应用已经得到了很好的研究;由于传统的模式匹配方法无法使用,因此在对流量进行加密时,这种方法尤其具有吸引力。不幸的是,机器学习的前景在网络安全领域实现得很慢。在本文中,我们强调了造成这种情况的两个主要原因:不准确的地面真值和高度非平稳的数据分布。为了演示和理解这些陷阱对流行机器学习算法的影响,我们设计并进行了实验,展示了六种常见算法在面对真实网络数据时的表现。通过我们的实验结果,我们确定了某些类别的算法在加密恶意软件流量分类任务上表现不佳的情况。我们为从业者提供了具体的建议,给出了现实世界的限制。从算法的角度来看,我们发现随机森林集成方法优于竞争方法。更重要的是,特征工程是决定性的;我们发现,在初始特征集上迭代,并包括领域专家建议的特征,对分类系统的性能有更大的影响。例如,在考虑的所有标准上,使用更具表现力的特征集的线性回归很容易优于使用标准网络流量表示的随机森林方法。我们的分析基于过去12个月从商业恶意软件沙箱和两个地理位置不同的大型企业网络收集的数百万个TLS加密会话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning for Encrypted Malware Traffic Classification: Accounting for Noisy Labels and Non-Stationarity
The application of machine learning for the detection of malicious network traffic has been well researched over the past several decades; it is particularly appealing when the traffic is encrypted because traditional pattern-matching approaches cannot be used. Unfortunately, the promise of machine learning has been slow to materialize in the network security domain. In this paper, we highlight two primary reasons why this is the case: inaccurate ground truth and a highly non-stationary data distribution. To demonstrate and understand the effect that these pitfalls have on popular machine learning algorithms, we design and carry out experiments that show how six common algorithms perform when confronted with real network data. With our experimental results, we identify the situations in which certain classes of algorithms underperform on the task of encrypted malware traffic classification. We offer concrete recommendations for practitioners given the real-world constraints outlined. From an algorithmic perspective, we find that the random forest ensemble method outperformed competing methods. More importantly, feature engineering was decisive; we found that iterating on the initial feature set, and including features suggested by domain experts, had a much greater impact on the performance of the classification system. For example, linear regression using the more expressive feature set easily outperformed the random forest method using a standard network traffic representation on all criteria considered. Our analysis is based on millions of TLS encrypted sessions collected over 12 months from a commercial malware sandbox and two geographically distinct, large enterprise networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信