通过字母重新表示的文本压缩

Philip M. Long, A. Natsev, J. Vitter
{"title":"通过字母重新表示的文本压缩","authors":"Philip M. Long, A. Natsev, J. Vitter","doi":"10.1109/DCC.1997.582003","DOIUrl":null,"url":null,"abstract":"We consider re-representing the alphabet so that a representation of a character reflects its properties as a predictor of future text. This enables us to use an estimator from a restricted class to map contexts to predictions of upcoming characters. We describe an algorithm that uses this idea in conjunction with neural networks. The performance of this implementation is compared to other compression methods, such as UNIX compress, gzip, PPMC, and an alternative neural network approach.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Text compression via alphabet re-representation\",\"authors\":\"Philip M. Long, A. Natsev, J. Vitter\",\"doi\":\"10.1109/DCC.1997.582003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider re-representing the alphabet so that a representation of a character reflects its properties as a predictor of future text. This enables us to use an estimator from a restricted class to map contexts to predictions of upcoming characters. We describe an algorithm that uses this idea in conjunction with neural networks. The performance of this implementation is compared to other compression methods, such as UNIX compress, gzip, PPMC, and an alternative neural network approach.\",\"PeriodicalId\":403990,\"journal\":{\"name\":\"Proceedings DCC '97. Data Compression Conference\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings DCC '97. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.1997.582003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们考虑重新表示字母表,以便字符的表示反映其属性,作为未来文本的预测器。这使我们能够使用来自受限类的估计器将上下文映射到即将到来的字符的预测。我们描述了一种将这种思想与神经网络结合使用的算法。将此实现的性能与其他压缩方法(如UNIX compress、gzip、PPMC和另一种神经网络方法)进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text compression via alphabet re-representation
We consider re-representing the alphabet so that a representation of a character reflects its properties as a predictor of future text. This enables us to use an estimator from a restricted class to map contexts to predictions of upcoming characters. We describe an algorithm that uses this idea in conjunction with neural networks. The performance of this implementation is compared to other compression methods, such as UNIX compress, gzip, PPMC, and an alternative neural network approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信