基于决策树分类器的遥感影像植被分类方法研究

Wei Wei, Dawid Połap, Xiaohua Li, M. Woźniak, Junzhe Liu
{"title":"基于决策树分类器的遥感影像植被分类方法研究","authors":"Wei Wei, Dawid Połap, Xiaohua Li, M. Woźniak, Junzhe Liu","doi":"10.1109/SSCI.2018.8628721","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of inaccurate classification of forest vegetation, this paper presents a study on possible method for remote sensing from images. As classifiers we have used decision tree methods based on the idea of Boost Tree, Ada Tree and C5 approaches. For the experiments we have used single decision tree generation method for which training tuples are generated by sampling. In experiments we tried to evaluate how classifications work for agriculture images.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Study on Remote Sensing Image Vegetation Classification Method Based on Decision Tree Classifier\",\"authors\":\"Wei Wei, Dawid Połap, Xiaohua Li, M. Woźniak, Junzhe Liu\",\"doi\":\"10.1109/SSCI.2018.8628721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of inaccurate classification of forest vegetation, this paper presents a study on possible method for remote sensing from images. As classifiers we have used decision tree methods based on the idea of Boost Tree, Ada Tree and C5 approaches. For the experiments we have used single decision tree generation method for which training tuples are generated by sampling. In experiments we tried to evaluate how classifications work for agriculture images.\",\"PeriodicalId\":235735,\"journal\":{\"name\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2018.8628721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

针对森林植被分类不准确的问题,研究了基于影像的遥感方法。作为分类器,我们使用了基于Boost树、Ada树和C5方法的决策树方法。对于实验,我们使用单决策树生成方法,其中训练元组是通过抽样生成的。在实验中,我们试图评估分类对农业图像的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Remote Sensing Image Vegetation Classification Method Based on Decision Tree Classifier
Aiming at the problem of inaccurate classification of forest vegetation, this paper presents a study on possible method for remote sensing from images. As classifiers we have used decision tree methods based on the idea of Boost Tree, Ada Tree and C5 approaches. For the experiments we have used single decision tree generation method for which training tuples are generated by sampling. In experiments we tried to evaluate how classifications work for agriculture images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信