可穿戴电阻式手势感应接口手环

Yujia Chen, Xiangpeng Liang, M. Assaad, H. Heidari
{"title":"可穿戴电阻式手势感应接口手环","authors":"Yujia Chen, Xiangpeng Liang, M. Assaad, H. Heidari","doi":"10.1109/UCET.2019.8881832","DOIUrl":null,"url":null,"abstract":"This paper presents a gesture recognition system based on the pressure changes produced by wrist tendon movements for wearable devices. The data of the pressure variations are captured by means of flexible and ultrathin force resistive sensors. A learning algorithm, Support Vector Machine, helps the system to distinguish various hand gestures through developed programming on MATLAB after extracting the key features of data. In order to achieve rapid gesture recognition with a shorter computational time, higher precision and less space complexity, genetic optimization algorithm is used to find the optimal parameter c (cost factor) and g (kernel function parameters) in SVM algorithm. The SVM parameter optimization improves the classification accuracy and the performance of the classifier. Finally, developed wearable resistive-based wrist-worn gesture sensing system classifies the hand gesture with high accuracy (>70%) and the results are displayed on the GUIDE user interface.","PeriodicalId":169373,"journal":{"name":"2019 UK/ China Emerging Technologies (UCET)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Wearable Resistive-based Gesture-Sensing Interface Bracelet\",\"authors\":\"Yujia Chen, Xiangpeng Liang, M. Assaad, H. Heidari\",\"doi\":\"10.1109/UCET.2019.8881832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a gesture recognition system based on the pressure changes produced by wrist tendon movements for wearable devices. The data of the pressure variations are captured by means of flexible and ultrathin force resistive sensors. A learning algorithm, Support Vector Machine, helps the system to distinguish various hand gestures through developed programming on MATLAB after extracting the key features of data. In order to achieve rapid gesture recognition with a shorter computational time, higher precision and less space complexity, genetic optimization algorithm is used to find the optimal parameter c (cost factor) and g (kernel function parameters) in SVM algorithm. The SVM parameter optimization improves the classification accuracy and the performance of the classifier. Finally, developed wearable resistive-based wrist-worn gesture sensing system classifies the hand gesture with high accuracy (>70%) and the results are displayed on the GUIDE user interface.\",\"PeriodicalId\":169373,\"journal\":{\"name\":\"2019 UK/ China Emerging Technologies (UCET)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 UK/ China Emerging Technologies (UCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCET.2019.8881832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 UK/ China Emerging Technologies (UCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCET.2019.8881832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于腕部肌腱运动产生的压力变化的可穿戴设备手势识别系统。压力变化的数据是通过柔性和超薄力电阻传感器捕获的。在提取数据的关键特征后,通过MATLAB开发编程,采用支持向量机(Support Vector Machine)学习算法,帮助系统识别各种手势。为了以更短的计算时间、更高的精度和更小的空间复杂度实现快速的手势识别,采用遗传优化算法寻找SVM算法中的最优参数c(代价因子)和g(核函数参数)。支持向量机参数优化提高了分类器的分类精度和性能。最后,开发的基于可穿戴电阻的腕戴式手势传感系统对手势进行了高精度分类(>70%),并将分类结果显示在GUIDE用户界面上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wearable Resistive-based Gesture-Sensing Interface Bracelet
This paper presents a gesture recognition system based on the pressure changes produced by wrist tendon movements for wearable devices. The data of the pressure variations are captured by means of flexible and ultrathin force resistive sensors. A learning algorithm, Support Vector Machine, helps the system to distinguish various hand gestures through developed programming on MATLAB after extracting the key features of data. In order to achieve rapid gesture recognition with a shorter computational time, higher precision and less space complexity, genetic optimization algorithm is used to find the optimal parameter c (cost factor) and g (kernel function parameters) in SVM algorithm. The SVM parameter optimization improves the classification accuracy and the performance of the classifier. Finally, developed wearable resistive-based wrist-worn gesture sensing system classifies the hand gesture with high accuracy (>70%) and the results are displayed on the GUIDE user interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信