{"title":"平面应力Si单晶中点缺陷的从头算分析","authors":"K. Sueoka, Yanbo Wang, S. Shiba, S. Fukutani","doi":"10.1299/JCST.2.478","DOIUrl":null,"url":null,"abstract":"The effect of compressive or tensile plane-stress on formation energies and electronic properties of point defects in Si single crystal was studied by first principles approach for in-plane strain up to 5.0 %. It was found that the formation energy of interstitial Si (I) decreased under tensile in-plane strain. On the other hand, the formation energy of vacancy (V) decreased under compressive in-plane strain. The most stable states of I and V in intrinsic Si were I+2 at T site and V0 respectively, independent of type and value of the in-plane strain.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ab Initio Analysis of Point Defects in Plane-Stressed Si Single Crystal\",\"authors\":\"K. Sueoka, Yanbo Wang, S. Shiba, S. Fukutani\",\"doi\":\"10.1299/JCST.2.478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of compressive or tensile plane-stress on formation energies and electronic properties of point defects in Si single crystal was studied by first principles approach for in-plane strain up to 5.0 %. It was found that the formation energy of interstitial Si (I) decreased under tensile in-plane strain. On the other hand, the formation energy of vacancy (V) decreased under compressive in-plane strain. The most stable states of I and V in intrinsic Si were I+2 at T site and V0 respectively, independent of type and value of the in-plane strain.\",\"PeriodicalId\":196913,\"journal\":{\"name\":\"Journal of Computational Science and Technology\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JCST.2.478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.2.478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ab Initio Analysis of Point Defects in Plane-Stressed Si Single Crystal
The effect of compressive or tensile plane-stress on formation energies and electronic properties of point defects in Si single crystal was studied by first principles approach for in-plane strain up to 5.0 %. It was found that the formation energy of interstitial Si (I) decreased under tensile in-plane strain. On the other hand, the formation energy of vacancy (V) decreased under compressive in-plane strain. The most stable states of I and V in intrinsic Si were I+2 at T site and V0 respectively, independent of type and value of the in-plane strain.