一种高能效FeRAM跨栏内存计算系统的三元权映射和电荷模式读出方案

T. Cao, Zhongyi Zhang, W. Goh, Chen Liu, Yao Zhu, Yuan Gao
{"title":"一种高能效FeRAM跨栏内存计算系统的三元权映射和电荷模式读出方案","authors":"T. Cao, Zhongyi Zhang, W. Goh, Chen Liu, Yao Zhu, Yuan Gao","doi":"10.1109/AICAS57966.2023.10168639","DOIUrl":null,"url":null,"abstract":"This work presents an edge-AI system built on capacitive ferroelectric random-access memory (FeRAM) crossbar array, which is compatible with CMOS backend-of-line (BEOL) fabrication process. A novel capacitive crossbar circuit and a ternary mapping technique are proposed. Compared to the conventional binary representation, the proposed ternary mapping improves the storage efficiency exponentially in weight resolution. The feasibility of neuromorphic computing system implemented on FeRAM crossbar array is explored with speech command classification task. A ResNet-32 model with 0.45M parameters is implemented on 64 × 64 FeRAM crossbar array with the measured FeRAM model. It achieved 97.12% inference accuracy with 2 ternary digits and 5% device variation on Google Speech Command dataset 35-command classification task.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Ternary Weight Mapping and Charge-mode Readout Scheme for Energy Efficient FeRAM Crossbar Compute-in-Memory System\",\"authors\":\"T. Cao, Zhongyi Zhang, W. Goh, Chen Liu, Yao Zhu, Yuan Gao\",\"doi\":\"10.1109/AICAS57966.2023.10168639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an edge-AI system built on capacitive ferroelectric random-access memory (FeRAM) crossbar array, which is compatible with CMOS backend-of-line (BEOL) fabrication process. A novel capacitive crossbar circuit and a ternary mapping technique are proposed. Compared to the conventional binary representation, the proposed ternary mapping improves the storage efficiency exponentially in weight resolution. The feasibility of neuromorphic computing system implemented on FeRAM crossbar array is explored with speech command classification task. A ResNet-32 model with 0.45M parameters is implemented on 64 × 64 FeRAM crossbar array with the measured FeRAM model. It achieved 97.12% inference accuracy with 2 ternary digits and 5% device variation on Google Speech Command dataset 35-command classification task.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于电容性铁电随机存取存储器(FeRAM)交叉棒阵列的边缘ai系统,该系统与CMOS后端线(BEOL)制造工艺兼容。提出了一种新型的电容交叉栅电路和三元映射技术。与传统的二进制表示相比,所提出的三元映射在权值分辨率上显着提高了存储效率。以语音命令分类任务为例,探讨了在FeRAM交叉棒阵列上实现神经形态计算系统的可行性。利用实测的FeRAM模型,在64 × 64 FeRAM交叉棒阵列上实现了参数为0.45M的ResNet-32模型。在谷歌Speech Command数据集35-command分类任务上,以2个三元数字和5%的设备变化实现了97.12%的推理准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Ternary Weight Mapping and Charge-mode Readout Scheme for Energy Efficient FeRAM Crossbar Compute-in-Memory System
This work presents an edge-AI system built on capacitive ferroelectric random-access memory (FeRAM) crossbar array, which is compatible with CMOS backend-of-line (BEOL) fabrication process. A novel capacitive crossbar circuit and a ternary mapping technique are proposed. Compared to the conventional binary representation, the proposed ternary mapping improves the storage efficiency exponentially in weight resolution. The feasibility of neuromorphic computing system implemented on FeRAM crossbar array is explored with speech command classification task. A ResNet-32 model with 0.45M parameters is implemented on 64 × 64 FeRAM crossbar array with the measured FeRAM model. It achieved 97.12% inference accuracy with 2 ternary digits and 5% device variation on Google Speech Command dataset 35-command classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信