{"title":"混合推荐系统的聚类方法","authors":"Qing Li, Byeong-Man Kim","doi":"10.1109/WI.2003.1241167","DOIUrl":null,"url":null,"abstract":"Recommender system is a kind of Web intelligence techniques to make a daily information filtering for people. Clustering techniques have been applied to the item-based collaborative filtering framework to solve the cold start problem. It also suggests a way to integrate the content information into the collaborative filtering. Extensive experiments have been conducted on MovieLens data to analyze the characteristics of our technique. The results show that our approach contributes to the improvement of prediction quality of the item-based collaborative filtering, especially for the cold start problem.","PeriodicalId":403574,"journal":{"name":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":"{\"title\":\"Clustering approach for hybrid recommender system\",\"authors\":\"Qing Li, Byeong-Man Kim\",\"doi\":\"10.1109/WI.2003.1241167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender system is a kind of Web intelligence techniques to make a daily information filtering for people. Clustering techniques have been applied to the item-based collaborative filtering framework to solve the cold start problem. It also suggests a way to integrate the content information into the collaborative filtering. Extensive experiments have been conducted on MovieLens data to analyze the characteristics of our technique. The results show that our approach contributes to the improvement of prediction quality of the item-based collaborative filtering, especially for the cold start problem.\",\"PeriodicalId\":403574,\"journal\":{\"name\":\"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"165\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2003.1241167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2003.1241167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recommender system is a kind of Web intelligence techniques to make a daily information filtering for people. Clustering techniques have been applied to the item-based collaborative filtering framework to solve the cold start problem. It also suggests a way to integrate the content information into the collaborative filtering. Extensive experiments have been conducted on MovieLens data to analyze the characteristics of our technique. The results show that our approach contributes to the improvement of prediction quality of the item-based collaborative filtering, especially for the cold start problem.