混合推荐系统的聚类方法

Qing Li, Byeong-Man Kim
{"title":"混合推荐系统的聚类方法","authors":"Qing Li, Byeong-Man Kim","doi":"10.1109/WI.2003.1241167","DOIUrl":null,"url":null,"abstract":"Recommender system is a kind of Web intelligence techniques to make a daily information filtering for people. Clustering techniques have been applied to the item-based collaborative filtering framework to solve the cold start problem. It also suggests a way to integrate the content information into the collaborative filtering. Extensive experiments have been conducted on MovieLens data to analyze the characteristics of our technique. The results show that our approach contributes to the improvement of prediction quality of the item-based collaborative filtering, especially for the cold start problem.","PeriodicalId":403574,"journal":{"name":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":"{\"title\":\"Clustering approach for hybrid recommender system\",\"authors\":\"Qing Li, Byeong-Man Kim\",\"doi\":\"10.1109/WI.2003.1241167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender system is a kind of Web intelligence techniques to make a daily information filtering for people. Clustering techniques have been applied to the item-based collaborative filtering framework to solve the cold start problem. It also suggests a way to integrate the content information into the collaborative filtering. Extensive experiments have been conducted on MovieLens data to analyze the characteristics of our technique. The results show that our approach contributes to the improvement of prediction quality of the item-based collaborative filtering, especially for the cold start problem.\",\"PeriodicalId\":403574,\"journal\":{\"name\":\"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"165\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2003.1241167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2003.1241167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165

摘要

推荐系统是一种为人们进行日常信息过滤的Web智能技术。将聚类技术应用到基于项的协同过滤框架中来解决冷启动问题。提出了一种将内容信息集成到协同过滤中的方法。我们对MovieLens的数据进行了大量的实验,以分析我们的技术的特点。结果表明,该方法有助于提高基于项目的协同过滤的预测质量,特别是对于冷启动问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering approach for hybrid recommender system
Recommender system is a kind of Web intelligence techniques to make a daily information filtering for people. Clustering techniques have been applied to the item-based collaborative filtering framework to solve the cold start problem. It also suggests a way to integrate the content information into the collaborative filtering. Extensive experiments have been conducted on MovieLens data to analyze the characteristics of our technique. The results show that our approach contributes to the improvement of prediction quality of the item-based collaborative filtering, especially for the cold start problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信