{"title":"基于灰度共生矩阵和粒子群算法的COVID-19诊断","authors":"Jiaji Wang, Logan Graham","doi":"10.4018/ijpch.309118","DOIUrl":null,"url":null,"abstract":"Three years have passed since the sudden outbreak of COVID-19. From that year, the governments of various countries gradually lifted the measures to prevent and control the pandemic. But the number of new infections and deaths from novel coronavirus infections has not declined. So we still need to identify and research the COVID-19 virus to minimize the damage to society. In this paper, the authors use the gray level cooccurrence matrix for feature extraction and particle swarm optimization algorithm to find the optimal solution. After that, this method is validated by using the more common K fold cross validation. Finally, the results of the experimental data are compared with the more advanced methods. Experimental data show that this method achieves the initial expectation.","PeriodicalId":296225,"journal":{"name":"International Journal of Patient-Centered Healthcare","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COVID-19 Diagnosis by Gray-Level Cooccurrence Matrix and PSO\",\"authors\":\"Jiaji Wang, Logan Graham\",\"doi\":\"10.4018/ijpch.309118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three years have passed since the sudden outbreak of COVID-19. From that year, the governments of various countries gradually lifted the measures to prevent and control the pandemic. But the number of new infections and deaths from novel coronavirus infections has not declined. So we still need to identify and research the COVID-19 virus to minimize the damage to society. In this paper, the authors use the gray level cooccurrence matrix for feature extraction and particle swarm optimization algorithm to find the optimal solution. After that, this method is validated by using the more common K fold cross validation. Finally, the results of the experimental data are compared with the more advanced methods. Experimental data show that this method achieves the initial expectation.\",\"PeriodicalId\":296225,\"journal\":{\"name\":\"International Journal of Patient-Centered Healthcare\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Patient-Centered Healthcare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijpch.309118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Patient-Centered Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijpch.309118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COVID-19 Diagnosis by Gray-Level Cooccurrence Matrix and PSO
Three years have passed since the sudden outbreak of COVID-19. From that year, the governments of various countries gradually lifted the measures to prevent and control the pandemic. But the number of new infections and deaths from novel coronavirus infections has not declined. So we still need to identify and research the COVID-19 virus to minimize the damage to society. In this paper, the authors use the gray level cooccurrence matrix for feature extraction and particle swarm optimization algorithm to find the optimal solution. After that, this method is validated by using the more common K fold cross validation. Finally, the results of the experimental data are compared with the more advanced methods. Experimental data show that this method achieves the initial expectation.