基于分布式计算大数据平台系统参数调优的Apache应用PaaS优化

T. Pattanshetti, V. Attar
{"title":"基于分布式计算大数据平台系统参数调优的Apache应用PaaS优化","authors":"T. Pattanshetti, V. Attar","doi":"10.4018/ijdst.2020100102","DOIUrl":null,"url":null,"abstract":"Widely used data processing platforms use distributed systems to process huge data efficiently. The aim of this article is to optimize the platform services by tuning only the relevant, tunable, system parameters and to identify the relation between the software quality metrics. The system parameters of data platforms based on the service level agreements can be defined and customized. In the first stage, the most significant parameters are identified and shortlisted using various feature selection approaches. In the second stage, the iterative runs of applications are executed for tuning these shortlisted parameters to identify the optimal value and to understand the impact of individual input parameters on the system output parameter. The empirical results imply significant improvement in performance and with which it is possible to render the proposed work optimizing the services offered by these data platforms.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PaaS Optimization of Apache Applications Using System Parameter Tuning of Big Data Platforms in Distributed Computing\",\"authors\":\"T. Pattanshetti, V. Attar\",\"doi\":\"10.4018/ijdst.2020100102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Widely used data processing platforms use distributed systems to process huge data efficiently. The aim of this article is to optimize the platform services by tuning only the relevant, tunable, system parameters and to identify the relation between the software quality metrics. The system parameters of data platforms based on the service level agreements can be defined and customized. In the first stage, the most significant parameters are identified and shortlisted using various feature selection approaches. In the second stage, the iterative runs of applications are executed for tuning these shortlisted parameters to identify the optimal value and to understand the impact of individual input parameters on the system output parameter. The empirical results imply significant improvement in performance and with which it is possible to render the proposed work optimizing the services offered by these data platforms.\",\"PeriodicalId\":118536,\"journal\":{\"name\":\"Int. J. Distributed Syst. Technol.\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Distributed Syst. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdst.2020100102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdst.2020100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广泛应用的数据处理平台采用分布式系统来高效地处理海量数据。本文的目的是通过仅调优相关的、可调的系统参数来优化平台服务,并确定软件质量度量之间的关系。基于服务水平协议的数据平台系统参数可以定义和定制。在第一阶段,使用各种特征选择方法识别和筛选最重要的参数。在第二阶段,执行应用程序的迭代运行,以调优这些入围参数,以确定最优值,并了解单个输入参数对系统输出参数的影响。实证结果意味着性能的显着改善,并且有可能使这些数据平台提供的服务优化所提出的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PaaS Optimization of Apache Applications Using System Parameter Tuning of Big Data Platforms in Distributed Computing
Widely used data processing platforms use distributed systems to process huge data efficiently. The aim of this article is to optimize the platform services by tuning only the relevant, tunable, system parameters and to identify the relation between the software quality metrics. The system parameters of data platforms based on the service level agreements can be defined and customized. In the first stage, the most significant parameters are identified and shortlisted using various feature selection approaches. In the second stage, the iterative runs of applications are executed for tuning these shortlisted parameters to identify the optimal value and to understand the impact of individual input parameters on the system output parameter. The empirical results imply significant improvement in performance and with which it is possible to render the proposed work optimizing the services offered by these data platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信