一种高效的云中间数据容错方法

Baoyan Song, Cai Ren, Xuecheng Li, Linlin Ding
{"title":"一种高效的云中间数据容错方法","authors":"Baoyan Song, Cai Ren, Xuecheng Li, Linlin Ding","doi":"10.1109/WISA.2014.44","DOIUrl":null,"url":null,"abstract":"Recently, cloud computing frameworks have gained popularity for processing large scale parallel data applications. They usually generate enormous amounts of intermediate data which are short-lived, yet are important for the completion of job. Once there are server failures, it leads to the failures of the intermediate data, and then affects the computation of the whole job. However, the existing fault-tolerant processing approaches only adopt simple replication strategies which can incur significant network overhead, and have no considering of the characteristics of the intermediate data. Therefore, in this paper, we propose an efficient supporting intermediate data fault-tolerant cloud computing framework, named IDF_Support framework. By dividing the computing tasks into different classifications, IDF_Support framework can effectively process the intermediate data failures. Then, two levels based intermediate data fault-tolerant algorithms are proposed, respectively the inner task intermediate data fault-tolerant algorithm (Inner task IDF) which resolves the fault-tolerance within a task, and the outer task intermediate data fault-tolerant algorithm (Outer task IDF) which resolves the fault-tolerance among tasks. The experimental results show that our algorithms keep the reliability of the system when there are server failures.","PeriodicalId":366169,"journal":{"name":"2014 11th Web Information System and Application Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Efficient Intermediate Data Fault-Tolerance Approach in the Cloud\",\"authors\":\"Baoyan Song, Cai Ren, Xuecheng Li, Linlin Ding\",\"doi\":\"10.1109/WISA.2014.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, cloud computing frameworks have gained popularity for processing large scale parallel data applications. They usually generate enormous amounts of intermediate data which are short-lived, yet are important for the completion of job. Once there are server failures, it leads to the failures of the intermediate data, and then affects the computation of the whole job. However, the existing fault-tolerant processing approaches only adopt simple replication strategies which can incur significant network overhead, and have no considering of the characteristics of the intermediate data. Therefore, in this paper, we propose an efficient supporting intermediate data fault-tolerant cloud computing framework, named IDF_Support framework. By dividing the computing tasks into different classifications, IDF_Support framework can effectively process the intermediate data failures. Then, two levels based intermediate data fault-tolerant algorithms are proposed, respectively the inner task intermediate data fault-tolerant algorithm (Inner task IDF) which resolves the fault-tolerance within a task, and the outer task intermediate data fault-tolerant algorithm (Outer task IDF) which resolves the fault-tolerance among tasks. The experimental results show that our algorithms keep the reliability of the system when there are server failures.\",\"PeriodicalId\":366169,\"journal\":{\"name\":\"2014 11th Web Information System and Application Conference\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th Web Information System and Application Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2014.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Web Information System and Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2014.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最近,云计算框架在处理大规模并行数据应用方面得到了广泛的应用。它们通常产生大量的中间数据,这些中间数据是短暂的,但对完成工作很重要。一旦服务器出现故障,就会导致中间数据的故障,进而影响整个作业的计算。然而,现有的容错处理方法只采用简单的复制策略,导致大量的网络开销,并且没有考虑中间数据的特性。因此,本文提出了一种高效支持中间数据容错的云计算框架,命名为IDF_Support框架。通过对计算任务进行分类,IDF_Support框架可以有效地处理中间数据故障。然后,提出了两种基于层次的中间数据容错算法,分别是解决任务内部容错问题的内部任务中间数据容错算法(inner task IDF)和解决任务间容错问题的外部任务中间数据容错算法(outer task IDF)。实验结果表明,该算法在服务器出现故障时仍能保持系统的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Intermediate Data Fault-Tolerance Approach in the Cloud
Recently, cloud computing frameworks have gained popularity for processing large scale parallel data applications. They usually generate enormous amounts of intermediate data which are short-lived, yet are important for the completion of job. Once there are server failures, it leads to the failures of the intermediate data, and then affects the computation of the whole job. However, the existing fault-tolerant processing approaches only adopt simple replication strategies which can incur significant network overhead, and have no considering of the characteristics of the intermediate data. Therefore, in this paper, we propose an efficient supporting intermediate data fault-tolerant cloud computing framework, named IDF_Support framework. By dividing the computing tasks into different classifications, IDF_Support framework can effectively process the intermediate data failures. Then, two levels based intermediate data fault-tolerant algorithms are proposed, respectively the inner task intermediate data fault-tolerant algorithm (Inner task IDF) which resolves the fault-tolerance within a task, and the outer task intermediate data fault-tolerant algorithm (Outer task IDF) which resolves the fault-tolerance among tasks. The experimental results show that our algorithms keep the reliability of the system when there are server failures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信