虚拟对象分类方法:对虚拟现实对象抓取的更丰富的理解

Andreea-Dalia Blaga, Maite Frutos Pascual, C. Creed, Ian Williams
{"title":"虚拟对象分类方法:对虚拟现实对象抓取的更丰富的理解","authors":"Andreea-Dalia Blaga, Maite Frutos Pascual, C. Creed, Ian Williams","doi":"10.1145/3489849.3489875","DOIUrl":null,"url":null,"abstract":"Object categorisation methods have been historically used in literature for understanding and collecting real objects together into meaningful groups and can be used to define human interaction patterns (i. e grasping). When investigating grasping patterns for Virtual Reality (VR), researchers used Zingg’s methodology which categorises objects based on shape and form. However, this methodology is limited and does not take into consideration other object attributes that might influence grasping interaction in VR. To address this, our work presents a study into three categorisation methods for virtual objects. We employ Zingg’s object categorisation as a benchmark against existing real and virtual object interaction work and introduce two new categorisation methods that focus on virtual object equilibrium and virtual object component parts. We evaluate these categorisation methods using a dataset of 1872 grasps from a VR docking task on 16 virtual representations of real objects and report findings on grasp patterns. We report on findings for each virtual object categorisation method showing differences in terms of grasp classes, grasp type and aperture. We conclude by detailing recommendations and future ideas on how these categorisation methods can be taken forward to inform a richer understanding of grasping in VR.","PeriodicalId":345527,"journal":{"name":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Virtual Object Categorisation Methods: Towards a Richer Understanding of Object Grasping for Virtual Reality\",\"authors\":\"Andreea-Dalia Blaga, Maite Frutos Pascual, C. Creed, Ian Williams\",\"doi\":\"10.1145/3489849.3489875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object categorisation methods have been historically used in literature for understanding and collecting real objects together into meaningful groups and can be used to define human interaction patterns (i. e grasping). When investigating grasping patterns for Virtual Reality (VR), researchers used Zingg’s methodology which categorises objects based on shape and form. However, this methodology is limited and does not take into consideration other object attributes that might influence grasping interaction in VR. To address this, our work presents a study into three categorisation methods for virtual objects. We employ Zingg’s object categorisation as a benchmark against existing real and virtual object interaction work and introduce two new categorisation methods that focus on virtual object equilibrium and virtual object component parts. We evaluate these categorisation methods using a dataset of 1872 grasps from a VR docking task on 16 virtual representations of real objects and report findings on grasp patterns. We report on findings for each virtual object categorisation method showing differences in terms of grasp classes, grasp type and aperture. We conclude by detailing recommendations and future ideas on how these categorisation methods can be taken forward to inform a richer understanding of grasping in VR.\",\"PeriodicalId\":345527,\"journal\":{\"name\":\"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489849.3489875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489849.3489875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在文献中,对象分类方法一直被用于理解和收集真实对象,并将其纳入有意义的群体,并可用于定义人类交互模式(即抓取)。在研究虚拟现实(VR)的抓取模式时,研究人员使用了Zingg的方法,该方法根据形状和形式对物体进行分类。然而,这种方法是有限的,并没有考虑到其他物体属性,可能会影响抓取交互在VR中。为了解决这个问题,我们的工作提出了对虚拟对象的三种分类方法的研究。我们采用Zingg的对象分类作为现有真实和虚拟对象交互工作的基准,并引入了两种新的分类方法,分别关注虚拟对象平衡和虚拟对象组成部分。我们使用来自VR对接任务的1872个抓取数据集来评估这些分类方法,这些数据集来自16个真实物体的虚拟表示,并报告抓取模式的发现。我们报告了每种虚拟对象分类方法的发现,显示了抓取类,抓取类型和孔径方面的差异。最后,我们详细介绍了这些分类方法的建议和未来的想法,以便更深入地了解VR中的抓取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual Object Categorisation Methods: Towards a Richer Understanding of Object Grasping for Virtual Reality
Object categorisation methods have been historically used in literature for understanding and collecting real objects together into meaningful groups and can be used to define human interaction patterns (i. e grasping). When investigating grasping patterns for Virtual Reality (VR), researchers used Zingg’s methodology which categorises objects based on shape and form. However, this methodology is limited and does not take into consideration other object attributes that might influence grasping interaction in VR. To address this, our work presents a study into three categorisation methods for virtual objects. We employ Zingg’s object categorisation as a benchmark against existing real and virtual object interaction work and introduce two new categorisation methods that focus on virtual object equilibrium and virtual object component parts. We evaluate these categorisation methods using a dataset of 1872 grasps from a VR docking task on 16 virtual representations of real objects and report findings on grasp patterns. We report on findings for each virtual object categorisation method showing differences in terms of grasp classes, grasp type and aperture. We conclude by detailing recommendations and future ideas on how these categorisation methods can be taken forward to inform a richer understanding of grasping in VR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信