Bolin Chen, Xuequn Shang, Min Li, Jianxin Wang, Fang-Xiang Wu
{"title":"用于识别个体癌症相关基因的两步逻辑回归算法","authors":"Bolin Chen, Xuequn Shang, Min Li, Jianxin Wang, Fang-Xiang Wu","doi":"10.1109/BIBM.2015.7359680","DOIUrl":null,"url":null,"abstract":"The identification of cancer-related genes is important towards the understanding of complex genetic diseases. Although many machine learning algorithms are proposed to identify disease-related genes, they often either have poor performance to identify locus heterogeneity cancer-related genes or are not applicable to predict individual-disease-related genes due to the lack of positive instances (imbalanced classification). To overcome these two issues, a two-step logistic regression (LR) based algorithm is proposed in this study for identifying individual-cancer-related genes. A set of high potential cancer-class-related genes is first generated in step 1, followed by a second round of LR-based algorithm conducted on this smaller dataset for identifying individual-cancer-related genes. Numerical experiments show that the proposed two-step LR-based algorithm not only works well for locus heterogeneity data, but also has good performance to handle the imbalanced classification problem. The individual-cancer-related gene identification experiments achieve AUC values of around 0.85 when the threshold of posterior probability is chosen between 0.3 and 0.6. All evaluations are conducted by using the leave-one-out cross validation method.","PeriodicalId":186217,"journal":{"name":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A two-step logistic regression algorithm for identifying individual-cancer-related genes\",\"authors\":\"Bolin Chen, Xuequn Shang, Min Li, Jianxin Wang, Fang-Xiang Wu\",\"doi\":\"10.1109/BIBM.2015.7359680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of cancer-related genes is important towards the understanding of complex genetic diseases. Although many machine learning algorithms are proposed to identify disease-related genes, they often either have poor performance to identify locus heterogeneity cancer-related genes or are not applicable to predict individual-disease-related genes due to the lack of positive instances (imbalanced classification). To overcome these two issues, a two-step logistic regression (LR) based algorithm is proposed in this study for identifying individual-cancer-related genes. A set of high potential cancer-class-related genes is first generated in step 1, followed by a second round of LR-based algorithm conducted on this smaller dataset for identifying individual-cancer-related genes. Numerical experiments show that the proposed two-step LR-based algorithm not only works well for locus heterogeneity data, but also has good performance to handle the imbalanced classification problem. The individual-cancer-related gene identification experiments achieve AUC values of around 0.85 when the threshold of posterior probability is chosen between 0.3 and 0.6. All evaluations are conducted by using the leave-one-out cross validation method.\",\"PeriodicalId\":186217,\"journal\":{\"name\":\"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2015.7359680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2015.7359680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A two-step logistic regression algorithm for identifying individual-cancer-related genes
The identification of cancer-related genes is important towards the understanding of complex genetic diseases. Although many machine learning algorithms are proposed to identify disease-related genes, they often either have poor performance to identify locus heterogeneity cancer-related genes or are not applicable to predict individual-disease-related genes due to the lack of positive instances (imbalanced classification). To overcome these two issues, a two-step logistic regression (LR) based algorithm is proposed in this study for identifying individual-cancer-related genes. A set of high potential cancer-class-related genes is first generated in step 1, followed by a second round of LR-based algorithm conducted on this smaller dataset for identifying individual-cancer-related genes. Numerical experiments show that the proposed two-step LR-based algorithm not only works well for locus heterogeneity data, but also has good performance to handle the imbalanced classification problem. The individual-cancer-related gene identification experiments achieve AUC values of around 0.85 when the threshold of posterior probability is chosen between 0.3 and 0.6. All evaluations are conducted by using the leave-one-out cross validation method.