在有关节和闭塞运动的情况下跟踪多个对象

S. Dockstader, Murat Tekalp
{"title":"在有关节和闭塞运动的情况下跟踪多个对象","authors":"S. Dockstader, Murat Tekalp","doi":"10.1109/HUMO.2000.897376","DOIUrl":null,"url":null,"abstract":"Presents a novel approach to the tracking of multiple articulate objects in the presence of occlusion in moderately complex scenes. Most conventional tracking algorithms work well when only one object is tracked at a time. However, when multiple objects must be tracked simultaneously, significant computation is often introduced in order to handle occlusion and to calculate the appropriate region correspondence between successive frames. We introduce a near-real-time solution to this problem by using a probabilistic mixing of low-level features and components. The algorithm mixes coarse motion estimates, change detection information and unobservable predictions to create accurate trajectories of moving objects. We implement this multifeature mixing strategy within the context of a video surveillance system using a modified Kalman filtering mechanism. Experimental results demonstrate the efficacy of the proposed tracking and surveillance system.","PeriodicalId":384462,"journal":{"name":"Proceedings Workshop on Human Motion","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Tracking multiple objects in the presence of articulated and occluded motion\",\"authors\":\"S. Dockstader, Murat Tekalp\",\"doi\":\"10.1109/HUMO.2000.897376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents a novel approach to the tracking of multiple articulate objects in the presence of occlusion in moderately complex scenes. Most conventional tracking algorithms work well when only one object is tracked at a time. However, when multiple objects must be tracked simultaneously, significant computation is often introduced in order to handle occlusion and to calculate the appropriate region correspondence between successive frames. We introduce a near-real-time solution to this problem by using a probabilistic mixing of low-level features and components. The algorithm mixes coarse motion estimates, change detection information and unobservable predictions to create accurate trajectories of moving objects. We implement this multifeature mixing strategy within the context of a video surveillance system using a modified Kalman filtering mechanism. Experimental results demonstrate the efficacy of the proposed tracking and surveillance system.\",\"PeriodicalId\":384462,\"journal\":{\"name\":\"Proceedings Workshop on Human Motion\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Workshop on Human Motion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMO.2000.897376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Workshop on Human Motion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMO.2000.897376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

提出了一种在中等复杂场景中存在遮挡的情况下跟踪多个清晰物体的新方法。大多数传统的跟踪算法在一次只跟踪一个目标时工作得很好。然而,当必须同时跟踪多个目标时,为了处理遮挡和计算连续帧之间的适当区域对应关系,通常会引入大量的计算。我们通过使用低级特征和组件的概率混合来引入接近实时的解决方案。该算法混合了粗略的运动估计、变化检测信息和不可观察的预测,以创建运动物体的准确轨迹。我们在视频监控系统中使用改进的卡尔曼滤波机制实现了这种多特征混合策略。实验结果证明了该跟踪监控系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking multiple objects in the presence of articulated and occluded motion
Presents a novel approach to the tracking of multiple articulate objects in the presence of occlusion in moderately complex scenes. Most conventional tracking algorithms work well when only one object is tracked at a time. However, when multiple objects must be tracked simultaneously, significant computation is often introduced in order to handle occlusion and to calculate the appropriate region correspondence between successive frames. We introduce a near-real-time solution to this problem by using a probabilistic mixing of low-level features and components. The algorithm mixes coarse motion estimates, change detection information and unobservable predictions to create accurate trajectories of moving objects. We implement this multifeature mixing strategy within the context of a video surveillance system using a modified Kalman filtering mechanism. Experimental results demonstrate the efficacy of the proposed tracking and surveillance system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信