{"title":"节点方向不稳定的传感器网络成对无线通信性能","authors":"W. Lintz, J. McEachen, D. Jenn","doi":"10.1109/SARNOF.2009.4850275","DOIUrl":null,"url":null,"abstract":"A model is proposed to describe expected communications performance between two sensor network nodes where both are unsteady in physical orientation with respect to a specified reference. Model application enables determination of transmit power in terms of a preferred link performance probability. Increasing applications of wireless sensor networks has proportionally increased fielding ideas and platforms. The stability of a platform for a sensor network node cannot always be assumed stable due to physical variation from motion or surface conditions. This creates a time-varying random orientation between nodes in communication with an adjacent partner. A stochastic model is proposed connecting the physical random orientation of a pair of elements to their transmission components. The resulting performance of a link using the proposed model is then applied to achieve reliable communications performance. Analysis demonstrates improved use of network power compared to a method which assigns a blanket power margin across the network.","PeriodicalId":230233,"journal":{"name":"2009 IEEE Sarnoff Symposium","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sensor network pair-wise wireless communications performance with unsteady node orientation\",\"authors\":\"W. Lintz, J. McEachen, D. Jenn\",\"doi\":\"10.1109/SARNOF.2009.4850275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model is proposed to describe expected communications performance between two sensor network nodes where both are unsteady in physical orientation with respect to a specified reference. Model application enables determination of transmit power in terms of a preferred link performance probability. Increasing applications of wireless sensor networks has proportionally increased fielding ideas and platforms. The stability of a platform for a sensor network node cannot always be assumed stable due to physical variation from motion or surface conditions. This creates a time-varying random orientation between nodes in communication with an adjacent partner. A stochastic model is proposed connecting the physical random orientation of a pair of elements to their transmission components. The resulting performance of a link using the proposed model is then applied to achieve reliable communications performance. Analysis demonstrates improved use of network power compared to a method which assigns a blanket power margin across the network.\",\"PeriodicalId\":230233,\"journal\":{\"name\":\"2009 IEEE Sarnoff Symposium\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Sarnoff Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SARNOF.2009.4850275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2009.4850275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensor network pair-wise wireless communications performance with unsteady node orientation
A model is proposed to describe expected communications performance between two sensor network nodes where both are unsteady in physical orientation with respect to a specified reference. Model application enables determination of transmit power in terms of a preferred link performance probability. Increasing applications of wireless sensor networks has proportionally increased fielding ideas and platforms. The stability of a platform for a sensor network node cannot always be assumed stable due to physical variation from motion or surface conditions. This creates a time-varying random orientation between nodes in communication with an adjacent partner. A stochastic model is proposed connecting the physical random orientation of a pair of elements to their transmission components. The resulting performance of a link using the proposed model is then applied to achieve reliable communications performance. Analysis demonstrates improved use of network power compared to a method which assigns a blanket power margin across the network.