基于人工神经网络和专家系统的H/sup∞/控制汽轮发电机安全评估

E. Nascimento, P. Goswami, E. Kasenally, B. Cory, D. Macdonald
{"title":"基于人工神经网络和专家系统的H/sup∞/控制汽轮发电机安全评估","authors":"E. Nascimento, P. Goswami, E. Kasenally, B. Cory, D. Macdonald","doi":"10.1109/ANN.1991.213496","DOIUrl":null,"url":null,"abstract":"The authors describe a preliminary framework for real time security assessment of turbine generators that integrates artificial neural networks (ANN) and knowledge-based expert systems (KBES). The authors also present the transient stability assessment of a turbine generator using a back propagation artificial neural network. Additional signals have been added to the AVR and governor loops of the turbine generator using H/sup infinity / control. The ANN's ability to learn, interpolate and reproduce behaviour is presented, showing how the stability of a high order nonlinear system can be obtained without the prior solution of the state equations.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"9 2-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Security assessment of a turbine generator using H/sup infinity / control based on artificial neural networks and expert systems\",\"authors\":\"E. Nascimento, P. Goswami, E. Kasenally, B. Cory, D. Macdonald\",\"doi\":\"10.1109/ANN.1991.213496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors describe a preliminary framework for real time security assessment of turbine generators that integrates artificial neural networks (ANN) and knowledge-based expert systems (KBES). The authors also present the transient stability assessment of a turbine generator using a back propagation artificial neural network. Additional signals have been added to the AVR and governor loops of the turbine generator using H/sup infinity / control. The ANN's ability to learn, interpolate and reproduce behaviour is presented, showing how the stability of a high order nonlinear system can be obtained without the prior solution of the state equations.<<ETX>>\",\"PeriodicalId\":119713,\"journal\":{\"name\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"volume\":\"9 2-4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANN.1991.213496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于人工神经网络(ANN)和基于知识的专家系统(KBES)的汽轮发电机实时安全评估框架。本文还提出了利用反向传播人工神经网络对汽轮发电机进行暂态稳定评估的方法。额外的信号已添加到AVR和调速器循环的涡轮发电机使用H/sup无限/控制。介绍了人工神经网络的学习、插值和再现行为的能力,展示了如何在不需要状态方程的先验解的情况下获得高阶非线性系统的稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Security assessment of a turbine generator using H/sup infinity / control based on artificial neural networks and expert systems
The authors describe a preliminary framework for real time security assessment of turbine generators that integrates artificial neural networks (ANN) and knowledge-based expert systems (KBES). The authors also present the transient stability assessment of a turbine generator using a back propagation artificial neural network. Additional signals have been added to the AVR and governor loops of the turbine generator using H/sup infinity / control. The ANN's ability to learn, interpolate and reproduce behaviour is presented, showing how the stability of a high order nonlinear system can be obtained without the prior solution of the state equations.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信