用小波与互相关相结合的方法预测phetchaburi流域的流量

Siriwat Yeetsorn, S. Sinthupinyo
{"title":"用小波与互相关相结合的方法预测phetchaburi流域的流量","authors":"Siriwat Yeetsorn, S. Sinthupinyo","doi":"10.1109/ICSSEM.2011.6081170","DOIUrl":null,"url":null,"abstract":"Discharge prediction is an essential component in water management systems. To obtain an accurate prediction model, we need a good preprocessing method for extracting actually important features of the discharge data. Thus, we propose a new combinational method which integrates Correlation Coefficient Analysis and Wavelet Decomposition. The processed discharge data from both methods are then used as input for two classification methods, namely Backpropagation Neural Networks and Multiple Linear Regression. In our experiment, we tested our method based on the real world data from the Phetchaburi river basin, Thailand. The obtained model achieved lower error rate than ones from other existing methods.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Discharge prediction in phetchaburi basin using a combination of wavelet and cross correlation\",\"authors\":\"Siriwat Yeetsorn, S. Sinthupinyo\",\"doi\":\"10.1109/ICSSEM.2011.6081170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discharge prediction is an essential component in water management systems. To obtain an accurate prediction model, we need a good preprocessing method for extracting actually important features of the discharge data. Thus, we propose a new combinational method which integrates Correlation Coefficient Analysis and Wavelet Decomposition. The processed discharge data from both methods are then used as input for two classification methods, namely Backpropagation Neural Networks and Multiple Linear Regression. In our experiment, we tested our method based on the real world data from the Phetchaburi river basin, Thailand. The obtained model achieved lower error rate than ones from other existing methods.\",\"PeriodicalId\":406311,\"journal\":{\"name\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSEM.2011.6081170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

排放预测是水管理系统的重要组成部分。为了获得准确的预测模型,我们需要一种好的预处理方法来提取放电数据的实际重要特征。因此,我们提出了一种结合相关系数分析和小波分解的组合方法。然后将这两种方法处理后的排放数据作为两种分类方法的输入,即反向传播神经网络和多元线性回归。在我们的实验中,我们基于泰国Phetchaburi河流域的真实数据测试了我们的方法。所得模型的错误率低于其他现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discharge prediction in phetchaburi basin using a combination of wavelet and cross correlation
Discharge prediction is an essential component in water management systems. To obtain an accurate prediction model, we need a good preprocessing method for extracting actually important features of the discharge data. Thus, we propose a new combinational method which integrates Correlation Coefficient Analysis and Wavelet Decomposition. The processed discharge data from both methods are then used as input for two classification methods, namely Backpropagation Neural Networks and Multiple Linear Regression. In our experiment, we tested our method based on the real world data from the Phetchaburi river basin, Thailand. The obtained model achieved lower error rate than ones from other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信