神经形态VLSI的刺激特异性适应模型

R. Mill, Sadique Sheik, Giacomo Indiveri, Susan L. Denham
{"title":"神经形态VLSI的刺激特异性适应模型","authors":"R. Mill, Sadique Sheik, Giacomo Indiveri, Susan L. Denham","doi":"10.1109/BIOCAS.2010.5709622","DOIUrl":null,"url":null,"abstract":"Stimulus-specific adaptation (SSA) is a phenomenon observed in neural systems which occurs when the spike count elicited in a single neuron by external stimuli decreases with repetitions of the same stimulus, and recovers when a different stimulus is presented. SSA therefore effectively highlights rare events in stimulus sequences, and suppresses responses to repetitive ones. In this paper we present a model of SSA based on synaptic depression and describe its implementation in neuromorphic analog VLSI. The hardware system is evaluated using biologically realistic spike trains with parameters chosen to match those used in physiological experiments. We examine the effect of input parameters upon SSA and show that the trends apparent in the results obtained in silico compare favourably with those observed in biological neurons.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A model of stimulus-specific adaptation in neuromorphic a VLSI\",\"authors\":\"R. Mill, Sadique Sheik, Giacomo Indiveri, Susan L. Denham\",\"doi\":\"10.1109/BIOCAS.2010.5709622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stimulus-specific adaptation (SSA) is a phenomenon observed in neural systems which occurs when the spike count elicited in a single neuron by external stimuli decreases with repetitions of the same stimulus, and recovers when a different stimulus is presented. SSA therefore effectively highlights rare events in stimulus sequences, and suppresses responses to repetitive ones. In this paper we present a model of SSA based on synaptic depression and describe its implementation in neuromorphic analog VLSI. The hardware system is evaluated using biologically realistic spike trains with parameters chosen to match those used in physiological experiments. We examine the effect of input parameters upon SSA and show that the trends apparent in the results obtained in silico compare favourably with those observed in biological neurons.\",\"PeriodicalId\":440499,\"journal\":{\"name\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2010.5709622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

刺激特异性适应(SSA)是在神经系统中观察到的一种现象,当外部刺激在单个神经元中引起的峰值计数随着相同刺激的重复而减少,当出现不同的刺激时恢复。因此,SSA有效地突出了刺激序列中的罕见事件,并抑制了对重复事件的反应。本文提出了一种基于突触抑制的SSA模型,并描述了其在神经形态模拟VLSI中的实现。硬件系统使用生物学上真实的尖峰序列进行评估,其参数选择与生理实验中使用的参数相匹配。我们研究了输入参数对SSA的影响,并表明在计算机中获得的结果中明显的趋势与在生物神经元中观察到的趋势相比较有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model of stimulus-specific adaptation in neuromorphic a VLSI
Stimulus-specific adaptation (SSA) is a phenomenon observed in neural systems which occurs when the spike count elicited in a single neuron by external stimuli decreases with repetitions of the same stimulus, and recovers when a different stimulus is presented. SSA therefore effectively highlights rare events in stimulus sequences, and suppresses responses to repetitive ones. In this paper we present a model of SSA based on synaptic depression and describe its implementation in neuromorphic analog VLSI. The hardware system is evaluated using biologically realistic spike trains with parameters chosen to match those used in physiological experiments. We examine the effect of input parameters upon SSA and show that the trends apparent in the results obtained in silico compare favourably with those observed in biological neurons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信