{"title":"动态数据聚类的深度无监督学习算法","authors":"P. D. Pantula, S. Miriyala, K. Mitra","doi":"10.1109/ICC54714.2021.9703152","DOIUrl":null,"url":null,"abstract":"Owing to the generation of vast amount of unlabelled dynamic data and the need to analyze them, deep unsupervised learning based clustering algorithms are gaining importance in the field of data science. Since the task of automated feature extraction is proficiently combined with the machine learning models in deep unsupervised learning algorithms, they are identified to be superior as compared to conventional dynamic similarity measure based clustering methods. In this context, the authors present a recurrent neural network (RNN) based clustering algorithm optimization, where the vital information representing the dynamic data (or time-series data) is extracted first and subsequently clustered using a soft clustering algorithm. This methodology not only ensures dynamic component extraction in terms of static features but also clusters them efficiently using an evolutionary clustering algorithm called Neuro-Fuzzy C-Means (NFCM) clustering, which reduces the large-scale optimization problem of FCM to small-scale along-with identification of optimal number of clusters. The proposed algorithm has been implemented on three different test data sets collected from machine learning repository and it was found that the results are 98-100% accurate.","PeriodicalId":382373,"journal":{"name":"2021 Seventh Indian Control Conference (ICC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Unsupervised Learning Algorithm for Dynamic Data Clustering\",\"authors\":\"P. D. Pantula, S. Miriyala, K. Mitra\",\"doi\":\"10.1109/ICC54714.2021.9703152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to the generation of vast amount of unlabelled dynamic data and the need to analyze them, deep unsupervised learning based clustering algorithms are gaining importance in the field of data science. Since the task of automated feature extraction is proficiently combined with the machine learning models in deep unsupervised learning algorithms, they are identified to be superior as compared to conventional dynamic similarity measure based clustering methods. In this context, the authors present a recurrent neural network (RNN) based clustering algorithm optimization, where the vital information representing the dynamic data (or time-series data) is extracted first and subsequently clustered using a soft clustering algorithm. This methodology not only ensures dynamic component extraction in terms of static features but also clusters them efficiently using an evolutionary clustering algorithm called Neuro-Fuzzy C-Means (NFCM) clustering, which reduces the large-scale optimization problem of FCM to small-scale along-with identification of optimal number of clusters. The proposed algorithm has been implemented on three different test data sets collected from machine learning repository and it was found that the results are 98-100% accurate.\",\"PeriodicalId\":382373,\"journal\":{\"name\":\"2021 Seventh Indian Control Conference (ICC)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC54714.2021.9703152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC54714.2021.9703152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Deep Unsupervised Learning Algorithm for Dynamic Data Clustering
Owing to the generation of vast amount of unlabelled dynamic data and the need to analyze them, deep unsupervised learning based clustering algorithms are gaining importance in the field of data science. Since the task of automated feature extraction is proficiently combined with the machine learning models in deep unsupervised learning algorithms, they are identified to be superior as compared to conventional dynamic similarity measure based clustering methods. In this context, the authors present a recurrent neural network (RNN) based clustering algorithm optimization, where the vital information representing the dynamic data (or time-series data) is extracted first and subsequently clustered using a soft clustering algorithm. This methodology not only ensures dynamic component extraction in terms of static features but also clusters them efficiently using an evolutionary clustering algorithm called Neuro-Fuzzy C-Means (NFCM) clustering, which reduces the large-scale optimization problem of FCM to small-scale along-with identification of optimal number of clusters. The proposed algorithm has been implemented on three different test data sets collected from machine learning repository and it was found that the results are 98-100% accurate.