Jinmeng Rao, Song Gao, Michelle Miller, Alfonso Morales
{"title":"地理空间知识图谱测量网络弹性:以美国多商品流动网络为例","authors":"Jinmeng Rao, Song Gao, Michelle Miller, Alfonso Morales","doi":"10.1145/3557990.3567569","DOIUrl":null,"url":null,"abstract":"Quantifying the resilience in the food system is important for food security issues. In this work, we present a geospatial knowledge graph (GeoKG)-based method for measuring the resilience of a multi-commodity flow network. Specifically, we develop a CFS-GeoKG ontology to describe geospatial semantics of a multi-commodity flow network comprehensively, and design resilience metrics that measure the node-level and network-level dependence of single-sourcing, distant, or non-adjacent suppliers/customers in food supply chains. We conduct a case study of the US state-level agricultural multi-commodity flow network with hierarchical commodity types. The results indicate that, by leveraging GeoKG, our method supports measuring both node-level and network-level resilience across space and over time and also helps discover concentration patterns of agricultural resources in the spatial network at different geographic scales.","PeriodicalId":117618,"journal":{"name":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Measuring network resilience via geospatial knowledge graph: a case study of the us multi-commodity flow network\",\"authors\":\"Jinmeng Rao, Song Gao, Michelle Miller, Alfonso Morales\",\"doi\":\"10.1145/3557990.3567569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantifying the resilience in the food system is important for food security issues. In this work, we present a geospatial knowledge graph (GeoKG)-based method for measuring the resilience of a multi-commodity flow network. Specifically, we develop a CFS-GeoKG ontology to describe geospatial semantics of a multi-commodity flow network comprehensively, and design resilience metrics that measure the node-level and network-level dependence of single-sourcing, distant, or non-adjacent suppliers/customers in food supply chains. We conduct a case study of the US state-level agricultural multi-commodity flow network with hierarchical commodity types. The results indicate that, by leveraging GeoKG, our method supports measuring both node-level and network-level resilience across space and over time and also helps discover concentration patterns of agricultural resources in the spatial network at different geographic scales.\",\"PeriodicalId\":117618,\"journal\":{\"name\":\"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3557990.3567569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3557990.3567569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring network resilience via geospatial knowledge graph: a case study of the us multi-commodity flow network
Quantifying the resilience in the food system is important for food security issues. In this work, we present a geospatial knowledge graph (GeoKG)-based method for measuring the resilience of a multi-commodity flow network. Specifically, we develop a CFS-GeoKG ontology to describe geospatial semantics of a multi-commodity flow network comprehensively, and design resilience metrics that measure the node-level and network-level dependence of single-sourcing, distant, or non-adjacent suppliers/customers in food supply chains. We conduct a case study of the US state-level agricultural multi-commodity flow network with hierarchical commodity types. The results indicate that, by leveraging GeoKG, our method supports measuring both node-level and network-level resilience across space and over time and also helps discover concentration patterns of agricultural resources in the spatial network at different geographic scales.