地理空间知识图谱测量网络弹性:以美国多商品流动网络为例

Jinmeng Rao, Song Gao, Michelle Miller, Alfonso Morales
{"title":"地理空间知识图谱测量网络弹性:以美国多商品流动网络为例","authors":"Jinmeng Rao, Song Gao, Michelle Miller, Alfonso Morales","doi":"10.1145/3557990.3567569","DOIUrl":null,"url":null,"abstract":"Quantifying the resilience in the food system is important for food security issues. In this work, we present a geospatial knowledge graph (GeoKG)-based method for measuring the resilience of a multi-commodity flow network. Specifically, we develop a CFS-GeoKG ontology to describe geospatial semantics of a multi-commodity flow network comprehensively, and design resilience metrics that measure the node-level and network-level dependence of single-sourcing, distant, or non-adjacent suppliers/customers in food supply chains. We conduct a case study of the US state-level agricultural multi-commodity flow network with hierarchical commodity types. The results indicate that, by leveraging GeoKG, our method supports measuring both node-level and network-level resilience across space and over time and also helps discover concentration patterns of agricultural resources in the spatial network at different geographic scales.","PeriodicalId":117618,"journal":{"name":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Measuring network resilience via geospatial knowledge graph: a case study of the us multi-commodity flow network\",\"authors\":\"Jinmeng Rao, Song Gao, Michelle Miller, Alfonso Morales\",\"doi\":\"10.1145/3557990.3567569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantifying the resilience in the food system is important for food security issues. In this work, we present a geospatial knowledge graph (GeoKG)-based method for measuring the resilience of a multi-commodity flow network. Specifically, we develop a CFS-GeoKG ontology to describe geospatial semantics of a multi-commodity flow network comprehensively, and design resilience metrics that measure the node-level and network-level dependence of single-sourcing, distant, or non-adjacent suppliers/customers in food supply chains. We conduct a case study of the US state-level agricultural multi-commodity flow network with hierarchical commodity types. The results indicate that, by leveraging GeoKG, our method supports measuring both node-level and network-level resilience across space and over time and also helps discover concentration patterns of agricultural resources in the spatial network at different geographic scales.\",\"PeriodicalId\":117618,\"journal\":{\"name\":\"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3557990.3567569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSPATIAL International Workshop on Geospatial Knowledge Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3557990.3567569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

量化粮食系统的恢复力对于解决粮食安全问题非常重要。在这项工作中,我们提出了一种基于地理空间知识图(GeoKG)的方法来测量多商品流网络的弹性。具体来说,我们开发了一个CFS-GeoKG本体来全面描述多商品流网络的地理空间语义,并设计了弹性指标来衡量食品供应链中单源、远程或非相邻供应商/客户的节点级和网络级依赖性。本文以美国州级农产品多商品流通网络为例,对商品类型进行了分级分析。结果表明,通过利用GeoKG,我们的方法支持跨空间和时间测量节点级和网络级弹性,并有助于发现不同地理尺度空间网络中农业资源的集中模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring network resilience via geospatial knowledge graph: a case study of the us multi-commodity flow network
Quantifying the resilience in the food system is important for food security issues. In this work, we present a geospatial knowledge graph (GeoKG)-based method for measuring the resilience of a multi-commodity flow network. Specifically, we develop a CFS-GeoKG ontology to describe geospatial semantics of a multi-commodity flow network comprehensively, and design resilience metrics that measure the node-level and network-level dependence of single-sourcing, distant, or non-adjacent suppliers/customers in food supply chains. We conduct a case study of the US state-level agricultural multi-commodity flow network with hierarchical commodity types. The results indicate that, by leveraging GeoKG, our method supports measuring both node-level and network-level resilience across space and over time and also helps discover concentration patterns of agricultural resources in the spatial network at different geographic scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信