基于马尔可夫链蒙特卡罗方法和深度神经网络的自动故事生成

Brent Harrison, Chris Purdy, Mark O. Riedl
{"title":"基于马尔可夫链蒙特卡罗方法和深度神经网络的自动故事生成","authors":"Brent Harrison, Chris Purdy, Mark O. Riedl","doi":"10.1609/aiide.v13i2.13003","DOIUrl":null,"url":null,"abstract":"\n \n In this paper, we introduce an approach to automated story generation using Markov Chain Monte Carlo (MCMC) sampling. This approach uses a sampling algorithm based on Metropolis-Hastings to generate a probability distribution which can be used to generate stories via random sampling that adhere to criteria learned by recurrent neural networks. We show the applicability of our technique through a case study where we generate novel stories using an acceptance criteria learned from a set of movie plots taken from Wikipedia. This study shows that stories generated using this approach adhere to this criteria 85%-86% of the time.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Toward Automated Story Generation with Markov Chain Monte Carlo Methods and Deep Neural Networks\",\"authors\":\"Brent Harrison, Chris Purdy, Mark O. Riedl\",\"doi\":\"10.1609/aiide.v13i2.13003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n In this paper, we introduce an approach to automated story generation using Markov Chain Monte Carlo (MCMC) sampling. This approach uses a sampling algorithm based on Metropolis-Hastings to generate a probability distribution which can be used to generate stories via random sampling that adhere to criteria learned by recurrent neural networks. We show the applicability of our technique through a case study where we generate novel stories using an acceptance criteria learned from a set of movie plots taken from Wikipedia. This study shows that stories generated using this approach adhere to this criteria 85%-86% of the time.\\n \\n\",\"PeriodicalId\":249108,\"journal\":{\"name\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v13i2.13003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v13i2.13003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

在本文中,我们介绍了一种使用马尔可夫链蒙特卡罗(MCMC)采样的自动故事生成方法。该方法使用基于Metropolis-Hastings的抽样算法生成概率分布,该概率分布可用于通过遵循循环神经网络学习的标准的随机抽样来生成故事。我们通过一个案例研究展示了我们技术的适用性,在这个案例研究中,我们使用从维基百科的一组电影情节中学习到的接受标准来生成小说故事。这项研究表明,使用这种方法生成的故事在85%-86%的时间里都符合这一标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Automated Story Generation with Markov Chain Monte Carlo Methods and Deep Neural Networks
In this paper, we introduce an approach to automated story generation using Markov Chain Monte Carlo (MCMC) sampling. This approach uses a sampling algorithm based on Metropolis-Hastings to generate a probability distribution which can be used to generate stories via random sampling that adhere to criteria learned by recurrent neural networks. We show the applicability of our technique through a case study where we generate novel stories using an acceptance criteria learned from a set of movie plots taken from Wikipedia. This study shows that stories generated using this approach adhere to this criteria 85%-86% of the time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信