{"title":"基于马尔可夫链蒙特卡罗方法和深度神经网络的自动故事生成","authors":"Brent Harrison, Chris Purdy, Mark O. Riedl","doi":"10.1609/aiide.v13i2.13003","DOIUrl":null,"url":null,"abstract":"\n \n In this paper, we introduce an approach to automated story generation using Markov Chain Monte Carlo (MCMC) sampling. This approach uses a sampling algorithm based on Metropolis-Hastings to generate a probability distribution which can be used to generate stories via random sampling that adhere to criteria learned by recurrent neural networks. We show the applicability of our technique through a case study where we generate novel stories using an acceptance criteria learned from a set of movie plots taken from Wikipedia. This study shows that stories generated using this approach adhere to this criteria 85%-86% of the time.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Toward Automated Story Generation with Markov Chain Monte Carlo Methods and Deep Neural Networks\",\"authors\":\"Brent Harrison, Chris Purdy, Mark O. Riedl\",\"doi\":\"10.1609/aiide.v13i2.13003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n In this paper, we introduce an approach to automated story generation using Markov Chain Monte Carlo (MCMC) sampling. This approach uses a sampling algorithm based on Metropolis-Hastings to generate a probability distribution which can be used to generate stories via random sampling that adhere to criteria learned by recurrent neural networks. We show the applicability of our technique through a case study where we generate novel stories using an acceptance criteria learned from a set of movie plots taken from Wikipedia. This study shows that stories generated using this approach adhere to this criteria 85%-86% of the time.\\n \\n\",\"PeriodicalId\":249108,\"journal\":{\"name\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v13i2.13003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v13i2.13003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward Automated Story Generation with Markov Chain Monte Carlo Methods and Deep Neural Networks
In this paper, we introduce an approach to automated story generation using Markov Chain Monte Carlo (MCMC) sampling. This approach uses a sampling algorithm based on Metropolis-Hastings to generate a probability distribution which can be used to generate stories via random sampling that adhere to criteria learned by recurrent neural networks. We show the applicability of our technique through a case study where we generate novel stories using an acceptance criteria learned from a set of movie plots taken from Wikipedia. This study shows that stories generated using this approach adhere to this criteria 85%-86% of the time.