{"title":"面向全光网络的简单智能路由与波长分配算法","authors":"Ding Zhemin, M. Hamdi","doi":"10.1117/12.436061","DOIUrl":null,"url":null,"abstract":"In this paper we consider the routing and wavelength assignment problem in a wavelength routed all optical network. Inspired by techniques from artificial intelligence, in particular the Blocking Island (BI) abstraction, we propose a simple and intelligent routing and wavelength assignment (RWA) algorithm: BI_RWA. This algorithm can be used in arbitrarily connected optical networks. In addition, it is general enough such that with some simple modifications, it can be applied to different optical networking scenarios: static or dynamic traffic, single or multiple fiber links between node pairs, with or without wavelength converters. We have conducted simulation experiments to evaluate the performance of our algorithm. The simulation is carried out in two parts: static traffic and dynamic traffic. The results will demonstrate that our RWA algorithm outperforms state-of-the-art related algorithms.","PeriodicalId":187370,"journal":{"name":"OptiComm: Optical Networking and Communications Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Simple and intelligent routing and wavelength assignment algorithm for all-optical networks\",\"authors\":\"Ding Zhemin, M. Hamdi\",\"doi\":\"10.1117/12.436061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the routing and wavelength assignment problem in a wavelength routed all optical network. Inspired by techniques from artificial intelligence, in particular the Blocking Island (BI) abstraction, we propose a simple and intelligent routing and wavelength assignment (RWA) algorithm: BI_RWA. This algorithm can be used in arbitrarily connected optical networks. In addition, it is general enough such that with some simple modifications, it can be applied to different optical networking scenarios: static or dynamic traffic, single or multiple fiber links between node pairs, with or without wavelength converters. We have conducted simulation experiments to evaluate the performance of our algorithm. The simulation is carried out in two parts: static traffic and dynamic traffic. The results will demonstrate that our RWA algorithm outperforms state-of-the-art related algorithms.\",\"PeriodicalId\":187370,\"journal\":{\"name\":\"OptiComm: Optical Networking and Communications Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OptiComm: Optical Networking and Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.436061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OptiComm: Optical Networking and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.436061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simple and intelligent routing and wavelength assignment algorithm for all-optical networks
In this paper we consider the routing and wavelength assignment problem in a wavelength routed all optical network. Inspired by techniques from artificial intelligence, in particular the Blocking Island (BI) abstraction, we propose a simple and intelligent routing and wavelength assignment (RWA) algorithm: BI_RWA. This algorithm can be used in arbitrarily connected optical networks. In addition, it is general enough such that with some simple modifications, it can be applied to different optical networking scenarios: static or dynamic traffic, single or multiple fiber links between node pairs, with or without wavelength converters. We have conducted simulation experiments to evaluate the performance of our algorithm. The simulation is carried out in two parts: static traffic and dynamic traffic. The results will demonstrate that our RWA algorithm outperforms state-of-the-art related algorithms.