具有非线性滑动曲面的非线性系统的状态相关滑动扇区

Sinan Ozcan, M. U. Salamci, B. E. Birinci
{"title":"具有非线性滑动曲面的非线性系统的状态相关滑动扇区","authors":"Sinan Ozcan, M. U. Salamci, B. E. Birinci","doi":"10.1109/ACC.2013.6580739","DOIUrl":null,"url":null,"abstract":"The paper suggests a method to design sliding sector control for a class of nonlinear systems in which the system trajectories are kept around a nonlinear sliding surface. The sliding surface is designed by using State Dependent Riccati Equations where Algebraic Riccati Equations are solved for frozen system states. The solutions are used to create the nonlinear (or state dependent) sliding surface around which state dependent sliding sectors are formed. The nonlinear system trajectories are forced inside the sliding sector by using the so-called sliding sector control. The method is illustrated by applying it to a nonlinear inverted pendulum model.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"State dependent sliding sectors for nonlinear systems with nonlinear sliding surfaces\",\"authors\":\"Sinan Ozcan, M. U. Salamci, B. E. Birinci\",\"doi\":\"10.1109/ACC.2013.6580739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper suggests a method to design sliding sector control for a class of nonlinear systems in which the system trajectories are kept around a nonlinear sliding surface. The sliding surface is designed by using State Dependent Riccati Equations where Algebraic Riccati Equations are solved for frozen system states. The solutions are used to create the nonlinear (or state dependent) sliding surface around which state dependent sliding sectors are formed. The nonlinear system trajectories are forced inside the sliding sector by using the so-called sliding sector control. The method is illustrated by applying it to a nonlinear inverted pendulum model.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6580739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一类非线性系统的滑动扇形控制的设计方法,其中系统轨迹保持在非线性滑动表面附近。采用状态相关里卡蒂方程设计滑动面,求解冻结系统状态的代数里卡蒂方程。这些解用于创建非线性(或状态相关)滑动面,在其周围形成状态相关滑动扇区。通过使用所谓的滑动扇区控制,将非线性系统轨迹强制进入滑动扇区。最后以非线性倒立摆模型为例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State dependent sliding sectors for nonlinear systems with nonlinear sliding surfaces
The paper suggests a method to design sliding sector control for a class of nonlinear systems in which the system trajectories are kept around a nonlinear sliding surface. The sliding surface is designed by using State Dependent Riccati Equations where Algebraic Riccati Equations are solved for frozen system states. The solutions are used to create the nonlinear (or state dependent) sliding surface around which state dependent sliding sectors are formed. The nonlinear system trajectories are forced inside the sliding sector by using the so-called sliding sector control. The method is illustrated by applying it to a nonlinear inverted pendulum model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信