社交媒体文本中位置表达的自动识别:比较分析

Fei Liu, M. Vasardani, Timothy Baldwin
{"title":"社交媒体文本中位置表达的自动识别:比较分析","authors":"Fei Liu, M. Vasardani, Timothy Baldwin","doi":"10.1145/2663713.2664426","DOIUrl":null,"url":null,"abstract":"With the proliferation of smartphones and the increasing popularity of social media, people have developed habits of posting not only their thoughts and opinions, but also content concerning their whereabouts. On such highly-interactive yet informal social media platforms, people make heavy use of informal language, including when it comes to locative expressions. Such usage inhibits the ability of traditional Natural Language Processing approaches to retrieve geospatial information from social media text. In this research, we: (1) develop a medium-scale corpus of \"locative expressions\" derived from a variety of social media sources; (2) benchmark the performance of a range of geoparsers over the corpus, with the finding that even the best-performing systems are substantially lacking; and (3) carry out extensive error analysis to suggest ways of improving the accuracy and robustness of geoparsers.","PeriodicalId":320466,"journal":{"name":"International Workshop on Location and the Web","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Automatic Identification of Locative Expressions from Social Media Text: A Comparative Analysis\",\"authors\":\"Fei Liu, M. Vasardani, Timothy Baldwin\",\"doi\":\"10.1145/2663713.2664426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of smartphones and the increasing popularity of social media, people have developed habits of posting not only their thoughts and opinions, but also content concerning their whereabouts. On such highly-interactive yet informal social media platforms, people make heavy use of informal language, including when it comes to locative expressions. Such usage inhibits the ability of traditional Natural Language Processing approaches to retrieve geospatial information from social media text. In this research, we: (1) develop a medium-scale corpus of \\\"locative expressions\\\" derived from a variety of social media sources; (2) benchmark the performance of a range of geoparsers over the corpus, with the finding that even the best-performing systems are substantially lacking; and (3) carry out extensive error analysis to suggest ways of improving the accuracy and robustness of geoparsers.\",\"PeriodicalId\":320466,\"journal\":{\"name\":\"International Workshop on Location and the Web\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Location and the Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2663713.2664426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Location and the Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663713.2664426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

随着智能手机的普及和社交媒体的日益普及,人们已经养成了不仅发布自己的想法和观点,还发布有关自己行踪的内容的习惯。在这种高度互动但非正式的社交媒体平台上,人们大量使用非正式语言,包括位置表达。这种用法抑制了传统的自然语言处理方法从社交媒体文本中检索地理空间信息的能力。在本研究中,我们:(1)开发了一个中等规模的来自各种社交媒体来源的“位置表达”语料库;(2)在语料库上对一系列地质分析仪的性能进行基准测试,发现即使是性能最好的系统也基本上缺乏;(3)进行广泛的误差分析,提出提高地球探测器精度和鲁棒性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Identification of Locative Expressions from Social Media Text: A Comparative Analysis
With the proliferation of smartphones and the increasing popularity of social media, people have developed habits of posting not only their thoughts and opinions, but also content concerning their whereabouts. On such highly-interactive yet informal social media platforms, people make heavy use of informal language, including when it comes to locative expressions. Such usage inhibits the ability of traditional Natural Language Processing approaches to retrieve geospatial information from social media text. In this research, we: (1) develop a medium-scale corpus of "locative expressions" derived from a variety of social media sources; (2) benchmark the performance of a range of geoparsers over the corpus, with the finding that even the best-performing systems are substantially lacking; and (3) carry out extensive error analysis to suggest ways of improving the accuracy and robustness of geoparsers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信