使用稀疏和低秩模型的自由呼吸心脏灌注MRI重建:与生理性改进的NCAT幻影验证

Sajan Goud, M. Jacob
{"title":"使用稀疏和低秩模型的自由呼吸心脏灌注MRI重建:与生理性改进的NCAT幻影验证","authors":"Sajan Goud, M. Jacob","doi":"10.1109/ICCSP.2011.5739310","DOIUrl":null,"url":null,"abstract":"We recently proposed an accelerated dynamic magnetic resonance imaging (MRI) reconstruction algorithm that exploits the underlying low rank and sparse properties of the data to achieve highly accelerated reconstructions. In this paper, we validate our algorithm in the context of dynamic free breathing cardiac Perfusion MRI on the Physiologically Improved Non Uniform Cardiac Torso Phantom, PINCAT phantom. The practical utilities of our scheme in providing significantly better reconstructions at higher accelerations in comparison to existing methods are studied. We demonstrate that our scheme do not have trade offs with accurate temporal modeling and spatial quality unlike the existing low rank based schemes. Our results also show the capability of our scheme to achieve better reconstruction qualities at high accelerations in comparison to using only the low rank or sparsity properties individually. We argue that the speed up obtained by our scheme could be capitalized in perfusion imaging to provide better spatio-temporal resolutions and volume coverage while the subject is freely breathing.","PeriodicalId":408736,"journal":{"name":"2011 International Conference on Communications and Signal Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Free breathing cardiac perfusion MRI reconstruction using a sparse and low rank model: Validation with the Physiologically Improved NCAT phantom\",\"authors\":\"Sajan Goud, M. Jacob\",\"doi\":\"10.1109/ICCSP.2011.5739310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We recently proposed an accelerated dynamic magnetic resonance imaging (MRI) reconstruction algorithm that exploits the underlying low rank and sparse properties of the data to achieve highly accelerated reconstructions. In this paper, we validate our algorithm in the context of dynamic free breathing cardiac Perfusion MRI on the Physiologically Improved Non Uniform Cardiac Torso Phantom, PINCAT phantom. The practical utilities of our scheme in providing significantly better reconstructions at higher accelerations in comparison to existing methods are studied. We demonstrate that our scheme do not have trade offs with accurate temporal modeling and spatial quality unlike the existing low rank based schemes. Our results also show the capability of our scheme to achieve better reconstruction qualities at high accelerations in comparison to using only the low rank or sparsity properties individually. We argue that the speed up obtained by our scheme could be capitalized in perfusion imaging to provide better spatio-temporal resolutions and volume coverage while the subject is freely breathing.\",\"PeriodicalId\":408736,\"journal\":{\"name\":\"2011 International Conference on Communications and Signal Processing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2011.5739310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2011.5739310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们最近提出了一种加速的动态磁共振成像(MRI)重建算法,该算法利用数据的底层低秩和稀疏特性来实现高度加速的重建。在本文中,我们在动态自由呼吸心脏灌注MRI的背景下对生理改进的非均匀心脏躯干幻影(PINCAT)幻影验证了我们的算法。研究了与现有方法相比,我们的方案在高加速度下提供更好的重建效果的实际效用。我们证明,与现有的低秩方案不同,我们的方案不需要在精确的时间建模和空间质量之间进行权衡。我们的结果还表明,与单独使用低秩或稀疏性属性相比,我们的方案能够在高加速度下实现更好的重建质量。我们认为,通过我们的方案获得的速度可以在灌注成像中得到利用,以提供更好的时空分辨率和体积覆盖,而受试者是自由呼吸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free breathing cardiac perfusion MRI reconstruction using a sparse and low rank model: Validation with the Physiologically Improved NCAT phantom
We recently proposed an accelerated dynamic magnetic resonance imaging (MRI) reconstruction algorithm that exploits the underlying low rank and sparse properties of the data to achieve highly accelerated reconstructions. In this paper, we validate our algorithm in the context of dynamic free breathing cardiac Perfusion MRI on the Physiologically Improved Non Uniform Cardiac Torso Phantom, PINCAT phantom. The practical utilities of our scheme in providing significantly better reconstructions at higher accelerations in comparison to existing methods are studied. We demonstrate that our scheme do not have trade offs with accurate temporal modeling and spatial quality unlike the existing low rank based schemes. Our results also show the capability of our scheme to achieve better reconstruction qualities at high accelerations in comparison to using only the low rank or sparsity properties individually. We argue that the speed up obtained by our scheme could be capitalized in perfusion imaging to provide better spatio-temporal resolutions and volume coverage while the subject is freely breathing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信