基于图嵌入和意见挖掘的虚假信息网络表征

O. Simek, Alyssa C. Mensch, Lin Li, Charlie K. Dagli
{"title":"基于图嵌入和意见挖掘的虚假信息网络表征","authors":"O. Simek, Alyssa C. Mensch, Lin Li, Charlie K. Dagli","doi":"10.1109/EISIC49498.2019.9108876","DOIUrl":null,"url":null,"abstract":"Global social media networks' omnipresent access, real time responsiveness and ability to connect with and influence people have been responsible for these networks' sweeping growth. However, as an unintended consequence, these defining characteristics helped create a powerful new technology for spread of propaganda and false information. We present a novel approach for characterizing disinformation networks on social media and distinguishing between different network roles using graph embeddings and hierarchical clustering. In addition, using topic filtering, we correlate the node characterization results with proxy opinion estimates. We plan to study opinion dynamics using signal processing on graphs approaches using longer-timescale social media datasets with the goal to model and infer influence among users in social media networks.","PeriodicalId":117256,"journal":{"name":"2019 European Intelligence and Security Informatics Conference (EISIC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Disinformation Networks Using Graph Embeddings and Opinion Mining\",\"authors\":\"O. Simek, Alyssa C. Mensch, Lin Li, Charlie K. Dagli\",\"doi\":\"10.1109/EISIC49498.2019.9108876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global social media networks' omnipresent access, real time responsiveness and ability to connect with and influence people have been responsible for these networks' sweeping growth. However, as an unintended consequence, these defining characteristics helped create a powerful new technology for spread of propaganda and false information. We present a novel approach for characterizing disinformation networks on social media and distinguishing between different network roles using graph embeddings and hierarchical clustering. In addition, using topic filtering, we correlate the node characterization results with proxy opinion estimates. We plan to study opinion dynamics using signal processing on graphs approaches using longer-timescale social media datasets with the goal to model and infer influence among users in social media networks.\",\"PeriodicalId\":117256,\"journal\":{\"name\":\"2019 European Intelligence and Security Informatics Conference (EISIC)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Intelligence and Security Informatics Conference (EISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EISIC49498.2019.9108876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Intelligence and Security Informatics Conference (EISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EISIC49498.2019.9108876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球社交媒体网络的无所不在的访问、实时响应以及与人们联系和影响的能力是这些网络迅速增长的原因。然而,作为一个意想不到的后果,这些决定性的特征帮助创造了一种强大的传播宣传和虚假信息的新技术。我们提出了一种新的方法来表征社交媒体上的虚假信息网络,并使用图嵌入和分层聚类来区分不同的网络角色。此外,使用主题过滤,我们将节点表征结果与代理意见估计关联起来。我们计划使用长时间尺度社交媒体数据集的图形信号处理方法来研究意见动态,目的是建模和推断社交媒体网络中用户的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Disinformation Networks Using Graph Embeddings and Opinion Mining
Global social media networks' omnipresent access, real time responsiveness and ability to connect with and influence people have been responsible for these networks' sweeping growth. However, as an unintended consequence, these defining characteristics helped create a powerful new technology for spread of propaganda and false information. We present a novel approach for characterizing disinformation networks on social media and distinguishing between different network roles using graph embeddings and hierarchical clustering. In addition, using topic filtering, we correlate the node characterization results with proxy opinion estimates. We plan to study opinion dynamics using signal processing on graphs approaches using longer-timescale social media datasets with the goal to model and infer influence among users in social media networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信