基于变换的多特征优化鲁棒分布式语音识别

D. Addou, S. Selouani, M. Boudraa, B. Boudraa
{"title":"基于变换的多特征优化鲁棒分布式语音识别","authors":"D. Addou, S. Selouani, M. Boudraa, B. Boudraa","doi":"10.1109/IEEEGCC.2011.5752586","DOIUrl":null,"url":null,"abstract":"This paper describes a noise-robust Distributed Speech Recognition (DSR) front-end using a combination of conventional Mel-cepstral Coefficient (MFCC) and Line Spectral Frequencies (LSF). These features are adequately transformed and reduced in a multi-stream scheme using Karhunen-Loeve Transform (KLT). We investigate the performance of a new front-end DSR in terms of recognition accuracy in adverse conditions as well as in terms of dimensionality reduction. Our results showed that for highly noisy speech, the proposed transformation scheme leads to a significant improvement in recognition accuracy on Aurora 2 task.","PeriodicalId":119104,"journal":{"name":"2011 IEEE GCC Conference and Exhibition (GCC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transform-based multi-feature optimization for robust distributed speech recognition\",\"authors\":\"D. Addou, S. Selouani, M. Boudraa, B. Boudraa\",\"doi\":\"10.1109/IEEEGCC.2011.5752586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a noise-robust Distributed Speech Recognition (DSR) front-end using a combination of conventional Mel-cepstral Coefficient (MFCC) and Line Spectral Frequencies (LSF). These features are adequately transformed and reduced in a multi-stream scheme using Karhunen-Loeve Transform (KLT). We investigate the performance of a new front-end DSR in terms of recognition accuracy in adverse conditions as well as in terms of dimensionality reduction. Our results showed that for highly noisy speech, the proposed transformation scheme leads to a significant improvement in recognition accuracy on Aurora 2 task.\",\"PeriodicalId\":119104,\"journal\":{\"name\":\"2011 IEEE GCC Conference and Exhibition (GCC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE GCC Conference and Exhibition (GCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEEGCC.2011.5752586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE GCC Conference and Exhibition (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2011.5752586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了一种结合传统梅尔倒谱系数(MFCC)和线谱频率(LSF)的抗噪分布式语音识别(DSR)前端。使用Karhunen-Loeve变换(KLT)在多流方案中对这些特征进行了充分的变换和简化。我们研究了一种新的前端DSR在不利条件下的识别精度以及降维方面的性能。结果表明,对于高噪声语音,本文提出的变换方案显著提高了Aurora 2任务的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transform-based multi-feature optimization for robust distributed speech recognition
This paper describes a noise-robust Distributed Speech Recognition (DSR) front-end using a combination of conventional Mel-cepstral Coefficient (MFCC) and Line Spectral Frequencies (LSF). These features are adequately transformed and reduced in a multi-stream scheme using Karhunen-Loeve Transform (KLT). We investigate the performance of a new front-end DSR in terms of recognition accuracy in adverse conditions as well as in terms of dimensionality reduction. Our results showed that for highly noisy speech, the proposed transformation scheme leads to a significant improvement in recognition accuracy on Aurora 2 task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信