A. Witsch, R. Reichle, K. Geihs, S. Lange, Martin A. Riedmiller
{"title":"通过正则化项增强情景自然演员-评论家算法以稳定控制结构的学习","authors":"A. Witsch, R. Reichle, K. Geihs, S. Lange, Martin A. Riedmiller","doi":"10.1109/ADPRL.2011.5967352","DOIUrl":null,"url":null,"abstract":"Incomplete or imprecise models of control systems make it difficult to find an appropriate structure and parameter set for a corresponding control policy. These problems are addressed by reinforcement learning algorithms like policy gradient methods. We describe how to stabilise the policy gradient descent by introducing a regularisation term to enhance the episodic natural actor-critic approach. This allows a more policy independent usage.","PeriodicalId":406195,"journal":{"name":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the episodic natural actor-critic algorithm by a regularisation term to stabilize learning of control structures\",\"authors\":\"A. Witsch, R. Reichle, K. Geihs, S. Lange, Martin A. Riedmiller\",\"doi\":\"10.1109/ADPRL.2011.5967352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incomplete or imprecise models of control systems make it difficult to find an appropriate structure and parameter set for a corresponding control policy. These problems are addressed by reinforcement learning algorithms like policy gradient methods. We describe how to stabilise the policy gradient descent by introducing a regularisation term to enhance the episodic natural actor-critic approach. This allows a more policy independent usage.\",\"PeriodicalId\":406195,\"journal\":{\"name\":\"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADPRL.2011.5967352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADPRL.2011.5967352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing the episodic natural actor-critic algorithm by a regularisation term to stabilize learning of control structures
Incomplete or imprecise models of control systems make it difficult to find an appropriate structure and parameter set for a corresponding control policy. These problems are addressed by reinforcement learning algorithms like policy gradient methods. We describe how to stabilise the policy gradient descent by introducing a regularisation term to enhance the episodic natural actor-critic approach. This allows a more policy independent usage.