具有摄动的非线性差分系统的渐近静态位置

S. Y. Kuptsov, S. Kuptsova, Uliana P. Zaranik
{"title":"具有摄动的非线性差分系统的渐近静态位置","authors":"S. Y. Kuptsov, S. Kuptsova, Uliana P. Zaranik","doi":"10.1109/SCP.2015.7342041","DOIUrl":null,"url":null,"abstract":"In this paper, we study qualitative properties of solutions of nonlinear systems of difference equations. In particular, we analyze asymptotic behavior of solutions of the systems under perturbations of a certain type. Using methods of Lyapunov functions, we present conditions guaranteeing that the perturbed system has an asymptotic quiescent position.","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On asymptotic quiescent position of nonlinear difference systems with perturbations\",\"authors\":\"S. Y. Kuptsov, S. Kuptsova, Uliana P. Zaranik\",\"doi\":\"10.1109/SCP.2015.7342041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study qualitative properties of solutions of nonlinear systems of difference equations. In particular, we analyze asymptotic behavior of solutions of the systems under perturbations of a certain type. Using methods of Lyapunov functions, we present conditions guaranteeing that the perturbed system has an asymptotic quiescent position.\",\"PeriodicalId\":110366,\"journal\":{\"name\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCP.2015.7342041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了非线性差分方程组解的定性性质。特别地,我们分析了一类扰动下系统解的渐近行为。利用李雅普诺夫函数的方法,给出了摄动系统具有渐近静态位置的保证条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On asymptotic quiescent position of nonlinear difference systems with perturbations
In this paper, we study qualitative properties of solutions of nonlinear systems of difference equations. In particular, we analyze asymptotic behavior of solutions of the systems under perturbations of a certain type. Using methods of Lyapunov functions, we present conditions guaranteeing that the perturbed system has an asymptotic quiescent position.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信