深度神经网络模型构建与过拟合研究

Tong Li, Hui Zhang, Linchang Fan, Hao Wang, Qian Liu
{"title":"深度神经网络模型构建与过拟合研究","authors":"Tong Li, Hui Zhang, Linchang Fan, Hao Wang, Qian Liu","doi":"10.1117/12.2639137","DOIUrl":null,"url":null,"abstract":"In recent years, deep neural network has been widely used in image recognition, natural language processing, computer vision and other fields, but it is prone to overfitting during network training. To solve this problem, this paper uses TensorFlow2.0 framework to construct multilayer perceptron deep network for Fashion-MNIST dataset, and uses dropout algorithm to solve the overfitting problem in the process of network training. The research results show that the dropout algorithm is applied to the deep neural network, which can make the deep neural network model have strong generalization ability and can effectively solve the overfitting problem of the training network. The research on overfitting problem has important practical significance for reducing the identification error of deep network.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on deep neural network model construction and overfitting\",\"authors\":\"Tong Li, Hui Zhang, Linchang Fan, Hao Wang, Qian Liu\",\"doi\":\"10.1117/12.2639137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep neural network has been widely used in image recognition, natural language processing, computer vision and other fields, but it is prone to overfitting during network training. To solve this problem, this paper uses TensorFlow2.0 framework to construct multilayer perceptron deep network for Fashion-MNIST dataset, and uses dropout algorithm to solve the overfitting problem in the process of network training. The research results show that the dropout algorithm is applied to the deep neural network, which can make the deep neural network model have strong generalization ability and can effectively solve the overfitting problem of the training network. The research on overfitting problem has important practical significance for reducing the identification error of deep network.\",\"PeriodicalId\":336892,\"journal\":{\"name\":\"Neural Networks, Information and Communication Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks, Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2639137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2639137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,深度神经网络在图像识别、自然语言处理、计算机视觉等领域得到了广泛的应用,但在网络训练过程中容易出现过拟合问题。为了解决这一问题,本文使用TensorFlow2.0框架构建Fashion-MNIST数据集的多层感知器深度网络,并使用dropout算法解决网络训练过程中的过拟合问题。研究结果表明,将dropout算法应用于深度神经网络,可以使深度神经网络模型具有较强的泛化能力,并能有效解决训练网络的过拟合问题。过拟合问题的研究对于降低深度网络的识别误差具有重要的现实意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on deep neural network model construction and overfitting
In recent years, deep neural network has been widely used in image recognition, natural language processing, computer vision and other fields, but it is prone to overfitting during network training. To solve this problem, this paper uses TensorFlow2.0 framework to construct multilayer perceptron deep network for Fashion-MNIST dataset, and uses dropout algorithm to solve the overfitting problem in the process of network training. The research results show that the dropout algorithm is applied to the deep neural network, which can make the deep neural network model have strong generalization ability and can effectively solve the overfitting problem of the training network. The research on overfitting problem has important practical significance for reducing the identification error of deep network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信