{"title":"摆动工具电极的电化学加工:最大压力的估计","authors":"T. Böhlke, R. Forster","doi":"10.2526/ijem.11.9","DOIUrl":null,"url":null,"abstract":"The optimal design of Electro Chemical Machining (ECM) processes is of significant technological importance. In the present work ECM processes with an oscillating tool electrode are considered. It is motivated by the fact that the workpiece electrode may suffer damage or may even fail if the applied load due to hydrodynamic forces is too large. A simple formula is developed for the reaction force acting on the tool electrode. The formula depends on the geometrical, the material and the process parameters. The predictions of the mechanical model are compared with experimental results.","PeriodicalId":407646,"journal":{"name":"International Journal of Electrical Machining","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electro Chemical Machining with Oscillating Tool Electrode : Estimation of Maximum Pressure\",\"authors\":\"T. Böhlke, R. Forster\",\"doi\":\"10.2526/ijem.11.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal design of Electro Chemical Machining (ECM) processes is of significant technological importance. In the present work ECM processes with an oscillating tool electrode are considered. It is motivated by the fact that the workpiece electrode may suffer damage or may even fail if the applied load due to hydrodynamic forces is too large. A simple formula is developed for the reaction force acting on the tool electrode. The formula depends on the geometrical, the material and the process parameters. The predictions of the mechanical model are compared with experimental results.\",\"PeriodicalId\":407646,\"journal\":{\"name\":\"International Journal of Electrical Machining\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Machining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2526/ijem.11.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Machining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2526/ijem.11.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electro Chemical Machining with Oscillating Tool Electrode : Estimation of Maximum Pressure
The optimal design of Electro Chemical Machining (ECM) processes is of significant technological importance. In the present work ECM processes with an oscillating tool electrode are considered. It is motivated by the fact that the workpiece electrode may suffer damage or may even fail if the applied load due to hydrodynamic forces is too large. A simple formula is developed for the reaction force acting on the tool electrode. The formula depends on the geometrical, the material and the process parameters. The predictions of the mechanical model are compared with experimental results.