F. Santos, S. Hari, P. M. Basso, L. Carro, P. Rech
{"title":"揭秘GPU可靠性:波束实验、故障模拟与分析的比较与结合","authors":"F. Santos, S. Hari, P. M. Basso, L. Carro, P. Rech","doi":"10.1109/IPDPS49936.2021.00037","DOIUrl":null,"url":null,"abstract":"Graphics Processing Units (GPUs) have moved from being dedicated devices for multimedia and gaming applications to general-purpose accelerators employed in High-Performance Computing (HPC) and safety-critical applications such as autonomous vehicles. This market shift led to a burst in the GPU’s computing capabilities and efficiency, significant improvements in the programming frameworks and performance evaluation tools, and a concern about their hardware reliability. In this paper, we compare and combine high-energy neutron beam experiments that account for more than 13 million years of natural terrestrial exposure, extensive architectural-level fault simulations that required more than 350 GPU hours (using SASSIFI and NVBitFI), and detailed application-level profiling. Our main goal is to answer one of the fundamental open questions in GPU reliability evaluation: whether fault simulation provides representative results that can be used to predict the failure rates of workloads running on GPUs. We show that, in most cases, fault simulation-based prediction for silent data corruptions is sufficiently close (differences lower than $5 \\times$) to the experimentally measured rates. We also analyze the reliability of some of the main GPU functional units (including mixed-precision and tensor cores). We find that the way GPU resources are instantiated plays a critical role in the overall system reliability and that faults outside the functional units generate most detectable errors.","PeriodicalId":372234,"journal":{"name":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Demystifying GPU Reliability: Comparing and Combining Beam Experiments, Fault Simulation, and Profiling\",\"authors\":\"F. Santos, S. Hari, P. M. Basso, L. Carro, P. Rech\",\"doi\":\"10.1109/IPDPS49936.2021.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphics Processing Units (GPUs) have moved from being dedicated devices for multimedia and gaming applications to general-purpose accelerators employed in High-Performance Computing (HPC) and safety-critical applications such as autonomous vehicles. This market shift led to a burst in the GPU’s computing capabilities and efficiency, significant improvements in the programming frameworks and performance evaluation tools, and a concern about their hardware reliability. In this paper, we compare and combine high-energy neutron beam experiments that account for more than 13 million years of natural terrestrial exposure, extensive architectural-level fault simulations that required more than 350 GPU hours (using SASSIFI and NVBitFI), and detailed application-level profiling. Our main goal is to answer one of the fundamental open questions in GPU reliability evaluation: whether fault simulation provides representative results that can be used to predict the failure rates of workloads running on GPUs. We show that, in most cases, fault simulation-based prediction for silent data corruptions is sufficiently close (differences lower than $5 \\\\times$) to the experimentally measured rates. We also analyze the reliability of some of the main GPU functional units (including mixed-precision and tensor cores). We find that the way GPU resources are instantiated plays a critical role in the overall system reliability and that faults outside the functional units generate most detectable errors.\",\"PeriodicalId\":372234,\"journal\":{\"name\":\"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS49936.2021.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS49936.2021.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demystifying GPU Reliability: Comparing and Combining Beam Experiments, Fault Simulation, and Profiling
Graphics Processing Units (GPUs) have moved from being dedicated devices for multimedia and gaming applications to general-purpose accelerators employed in High-Performance Computing (HPC) and safety-critical applications such as autonomous vehicles. This market shift led to a burst in the GPU’s computing capabilities and efficiency, significant improvements in the programming frameworks and performance evaluation tools, and a concern about their hardware reliability. In this paper, we compare and combine high-energy neutron beam experiments that account for more than 13 million years of natural terrestrial exposure, extensive architectural-level fault simulations that required more than 350 GPU hours (using SASSIFI and NVBitFI), and detailed application-level profiling. Our main goal is to answer one of the fundamental open questions in GPU reliability evaluation: whether fault simulation provides representative results that can be used to predict the failure rates of workloads running on GPUs. We show that, in most cases, fault simulation-based prediction for silent data corruptions is sufficiently close (differences lower than $5 \times$) to the experimentally measured rates. We also analyze the reliability of some of the main GPU functional units (including mixed-precision and tensor cores). We find that the way GPU resources are instantiated plays a critical role in the overall system reliability and that faults outside the functional units generate most detectable errors.