{"title":"静电力对单泡上升动力学及传热系数的影响:静电力对单泡上升动力学的影响","authors":"M. Salehi, Samaneh Poursaman","doi":"10.4018/IJCCE.2016070103","DOIUrl":null,"url":null,"abstract":"In this study, the effect of an applied electric field on the separation and rise of bubble was simulated by Computational Fluid dynamics and results were compared with experimental data. The numerical results showed proper agreement (10%) with experimental reports. The working fluids in the experiment were air, water, and oil. During the simulation, the effects of different voltages on the bubble, bubble ascent, Reynolds and Nusselt number were investigated. The results showed that the more polar air bubbles in the fluid changed and diverted its route. Applying an electric field, reduces separation time, resulting in the formation of bubbles and more bubbles generated at the same time that it increases the heat transfer.","PeriodicalId":132974,"journal":{"name":"Int. J. Chemoinformatics Chem. Eng.","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Electrostatic Forces on the Dynamic and Heat Transfer Coefficient of Single Bubble Rising: Electrostatic Forces Effect on the Dynamic of Single Bubble Rising by CFD\",\"authors\":\"M. Salehi, Samaneh Poursaman\",\"doi\":\"10.4018/IJCCE.2016070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effect of an applied electric field on the separation and rise of bubble was simulated by Computational Fluid dynamics and results were compared with experimental data. The numerical results showed proper agreement (10%) with experimental reports. The working fluids in the experiment were air, water, and oil. During the simulation, the effects of different voltages on the bubble, bubble ascent, Reynolds and Nusselt number were investigated. The results showed that the more polar air bubbles in the fluid changed and diverted its route. Applying an electric field, reduces separation time, resulting in the formation of bubbles and more bubbles generated at the same time that it increases the heat transfer.\",\"PeriodicalId\":132974,\"journal\":{\"name\":\"Int. J. Chemoinformatics Chem. Eng.\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Chemoinformatics Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCCE.2016070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Chemoinformatics Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCCE.2016070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Impact of Electrostatic Forces on the Dynamic and Heat Transfer Coefficient of Single Bubble Rising: Electrostatic Forces Effect on the Dynamic of Single Bubble Rising by CFD
In this study, the effect of an applied electric field on the separation and rise of bubble was simulated by Computational Fluid dynamics and results were compared with experimental data. The numerical results showed proper agreement (10%) with experimental reports. The working fluids in the experiment were air, water, and oil. During the simulation, the effects of different voltages on the bubble, bubble ascent, Reynolds and Nusselt number were investigated. The results showed that the more polar air bubbles in the fluid changed and diverted its route. Applying an electric field, reduces separation time, resulting in the formation of bubbles and more bubbles generated at the same time that it increases the heat transfer.