{"title":"桥梁波动估计器的效率和概率性质","authors":"A. Saichev, S. Lapinova, M. Tarakanova","doi":"10.2139/ssrn.2026389","DOIUrl":null,"url":null,"abstract":"We discuss the efficiency of the quadratic bridge volatility estimator in comparison with Parkinson, Garman–Klass and Roger–Satchell estimators. It is shown in particular that point and interval estimations of volatility, resting on the bridge estimator, are considerably more efficient than analogous estimations, resting on the Parkinson, Garman–Klass and Roger–Satchell ones.","PeriodicalId":187082,"journal":{"name":"ERN: Financial Market Volatility (Topic)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficiency and Probabilistic Properties of Bridge Volatility Estimator\",\"authors\":\"A. Saichev, S. Lapinova, M. Tarakanova\",\"doi\":\"10.2139/ssrn.2026389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the efficiency of the quadratic bridge volatility estimator in comparison with Parkinson, Garman–Klass and Roger–Satchell estimators. It is shown in particular that point and interval estimations of volatility, resting on the bridge estimator, are considerably more efficient than analogous estimations, resting on the Parkinson, Garman–Klass and Roger–Satchell ones.\",\"PeriodicalId\":187082,\"journal\":{\"name\":\"ERN: Financial Market Volatility (Topic)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Financial Market Volatility (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2026389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Financial Market Volatility (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2026389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficiency and Probabilistic Properties of Bridge Volatility Estimator
We discuss the efficiency of the quadratic bridge volatility estimator in comparison with Parkinson, Garman–Klass and Roger–Satchell estimators. It is shown in particular that point and interval estimations of volatility, resting on the bridge estimator, are considerably more efficient than analogous estimations, resting on the Parkinson, Garman–Klass and Roger–Satchell ones.