桥梁波动估计器的效率和概率性质

A. Saichev, S. Lapinova, M. Tarakanova
{"title":"桥梁波动估计器的效率和概率性质","authors":"A. Saichev, S. Lapinova, M. Tarakanova","doi":"10.2139/ssrn.2026389","DOIUrl":null,"url":null,"abstract":"We discuss the efficiency of the quadratic bridge volatility estimator in comparison with Parkinson, Garman–Klass and Roger–Satchell estimators. It is shown in particular that point and interval estimations of volatility, resting on the bridge estimator, are considerably more efficient than analogous estimations, resting on the Parkinson, Garman–Klass and Roger–Satchell ones.","PeriodicalId":187082,"journal":{"name":"ERN: Financial Market Volatility (Topic)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficiency and Probabilistic Properties of Bridge Volatility Estimator\",\"authors\":\"A. Saichev, S. Lapinova, M. Tarakanova\",\"doi\":\"10.2139/ssrn.2026389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the efficiency of the quadratic bridge volatility estimator in comparison with Parkinson, Garman–Klass and Roger–Satchell estimators. It is shown in particular that point and interval estimations of volatility, resting on the bridge estimator, are considerably more efficient than analogous estimations, resting on the Parkinson, Garman–Klass and Roger–Satchell ones.\",\"PeriodicalId\":187082,\"journal\":{\"name\":\"ERN: Financial Market Volatility (Topic)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Financial Market Volatility (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2026389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Financial Market Volatility (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2026389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们讨论了二次桥波动估计的有效性,并与Parkinson、Garman-Klass和Roger-Satchell估计进行了比较。本文特别指出,基于桥估计的波动率的点和区间估计比基于帕金森、Garman-Klass和Roger-Satchell估计的类似估计要有效得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency and Probabilistic Properties of Bridge Volatility Estimator
We discuss the efficiency of the quadratic bridge volatility estimator in comparison with Parkinson, Garman–Klass and Roger–Satchell estimators. It is shown in particular that point and interval estimations of volatility, resting on the bridge estimator, are considerably more efficient than analogous estimations, resting on the Parkinson, Garman–Klass and Roger–Satchell ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信