面部情感分析的统一方法:MAE-Face视觉表征

Bowen Ma, Wei Zhang, Feng Qiu, Yu-qiong Ding
{"title":"面部情感分析的统一方法:MAE-Face视觉表征","authors":"Bowen Ma, Wei Zhang, Feng Qiu, Yu-qiong Ding","doi":"10.1109/CVPRW59228.2023.00630","DOIUrl":null,"url":null,"abstract":"Facial affect analysis is essential for understanding human expressions and behaviors, encompassing action unit (AU) detection, expression (EXPR) recognition, and valence-arousal (VA) estimation. The CVPR 2023 Competition on Affective Behavior Analysis in-the-wild (ABAW) is dedicated to providing a high-quality and large-scale Affwild2 dataset for identifying widely used emotion representations. In this paper, we employ MAE-Face as a unified approach to develop robust visual representations for facial affect analysis. We propose multiple techniques to improve its fine-tuning performance on various downstream tasks, incorporating a two-pass pre-training process and a two-pass fine-tuning process. Our approach exhibits strong results on numerous datasets, highlighting its versatility. Moreover, the proposed model acts as a fundamental component for our final framework in the ABAW5 competition. Our submission achieves outstanding outcomes, ranking first place in the AU and EXPR tracks and second place in the VA track.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified Approach to Facial Affect Analysis: the MAE-Face Visual Representation\",\"authors\":\"Bowen Ma, Wei Zhang, Feng Qiu, Yu-qiong Ding\",\"doi\":\"10.1109/CVPRW59228.2023.00630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial affect analysis is essential for understanding human expressions and behaviors, encompassing action unit (AU) detection, expression (EXPR) recognition, and valence-arousal (VA) estimation. The CVPR 2023 Competition on Affective Behavior Analysis in-the-wild (ABAW) is dedicated to providing a high-quality and large-scale Affwild2 dataset for identifying widely used emotion representations. In this paper, we employ MAE-Face as a unified approach to develop robust visual representations for facial affect analysis. We propose multiple techniques to improve its fine-tuning performance on various downstream tasks, incorporating a two-pass pre-training process and a two-pass fine-tuning process. Our approach exhibits strong results on numerous datasets, highlighting its versatility. Moreover, the proposed model acts as a fundamental component for our final framework in the ABAW5 competition. Our submission achieves outstanding outcomes, ranking first place in the AU and EXPR tracks and second place in the VA track.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"272 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

面部情感分析是理解人类表情和行为的关键,包括动作单元(AU)检测、表情(EXPR)识别和价值唤醒(VA)估计。CVPR 2023情感行为分析竞赛(ABAW)致力于提供高质量和大规模的Affwild2数据集,用于识别广泛使用的情感表征。在本文中,我们采用MAE-Face作为统一的方法来开发用于面部情感分析的鲁棒视觉表示。我们提出了多种技术来提高其在各种下游任务上的微调性能,包括两步预训练过程和两步微调过程。我们的方法在许多数据集上显示出强有力的结果,突出了它的多功能性。此外,所提出的模型作为我们在ABAW5竞赛中最终框架的基本组件。我们的提交取得了突出的成果,在AU和EXPR领域排名第一,在VA领域排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Unified Approach to Facial Affect Analysis: the MAE-Face Visual Representation
Facial affect analysis is essential for understanding human expressions and behaviors, encompassing action unit (AU) detection, expression (EXPR) recognition, and valence-arousal (VA) estimation. The CVPR 2023 Competition on Affective Behavior Analysis in-the-wild (ABAW) is dedicated to providing a high-quality and large-scale Affwild2 dataset for identifying widely used emotion representations. In this paper, we employ MAE-Face as a unified approach to develop robust visual representations for facial affect analysis. We propose multiple techniques to improve its fine-tuning performance on various downstream tasks, incorporating a two-pass pre-training process and a two-pass fine-tuning process. Our approach exhibits strong results on numerous datasets, highlighting its versatility. Moreover, the proposed model acts as a fundamental component for our final framework in the ABAW5 competition. Our submission achieves outstanding outcomes, ranking first place in the AU and EXPR tracks and second place in the VA track.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信