基于时频域心电降噪的深度自适应自编码器网络

Amir Mohammadisrab, Poorya Aghaomidi, Jalil Mazloum, M. Akbarzadeh, M. Orooji, N. Mokari, H. Yanikomeroglu
{"title":"基于时频域心电降噪的深度自适应自编码器网络","authors":"Amir Mohammadisrab, Poorya Aghaomidi, Jalil Mazloum, M. Akbarzadeh, M. Orooji, N. Mokari, H. Yanikomeroglu","doi":"10.23919/APSIPAASC55919.2022.9980058","DOIUrl":null,"url":null,"abstract":"In this paper, we study the performance of a deep adaptive denoising auto-encoder network (DeepADAENet) for electrocardiogram (ECG) signal noise cancelation in the time-frequency domain for practical use cases. In order to achieve a higher resolution in distinguishing the noise from valuable data, the fractional Stockwell transform (FrST) is exploited to convert the ECG to the time-frequency image. The magnitude of the time-frequency version of the ECG is noise-canceled using DeepADAENet. Then, inverse FrST is utilized to return the denoised time-frequency ECG into the time domain. Furthermore, we use the MIT-BID Apnea-ECG database (APNEA-ECG) for preparing the dataset due to various physiologies and records compared with other ECG databases. Moreover, muscle artifacts (MA), baseline wander (BW), and electrode motion (EM) from the MIT-BID Noise Stress Test Database (NSTDB) are utilized to make noisy this clean dataset. The ECG signals recorded by non-clinical devices contain more noise than clinical recording. Accordingly, by changing the coefficient and frequency of noise resources, we attempt to close the simulated noisy signal to reality. Results reveal the excellent performance of DeepADAENet compared with similar work in terms of signal-to-noise ratio (SNR), root mean square error (RMSE), and percent root mean square difference (PRD).","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Adaptive Denoising Auto-Encoder Networks for ECG Noise Cancellation via Time-Frequency Domain\",\"authors\":\"Amir Mohammadisrab, Poorya Aghaomidi, Jalil Mazloum, M. Akbarzadeh, M. Orooji, N. Mokari, H. Yanikomeroglu\",\"doi\":\"10.23919/APSIPAASC55919.2022.9980058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the performance of a deep adaptive denoising auto-encoder network (DeepADAENet) for electrocardiogram (ECG) signal noise cancelation in the time-frequency domain for practical use cases. In order to achieve a higher resolution in distinguishing the noise from valuable data, the fractional Stockwell transform (FrST) is exploited to convert the ECG to the time-frequency image. The magnitude of the time-frequency version of the ECG is noise-canceled using DeepADAENet. Then, inverse FrST is utilized to return the denoised time-frequency ECG into the time domain. Furthermore, we use the MIT-BID Apnea-ECG database (APNEA-ECG) for preparing the dataset due to various physiologies and records compared with other ECG databases. Moreover, muscle artifacts (MA), baseline wander (BW), and electrode motion (EM) from the MIT-BID Noise Stress Test Database (NSTDB) are utilized to make noisy this clean dataset. The ECG signals recorded by non-clinical devices contain more noise than clinical recording. Accordingly, by changing the coefficient and frequency of noise resources, we attempt to close the simulated noisy signal to reality. Results reveal the excellent performance of DeepADAENet compared with similar work in terms of signal-to-noise ratio (SNR), root mean square error (RMSE), and percent root mean square difference (PRD).\",\"PeriodicalId\":382967,\"journal\":{\"name\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPAASC55919.2022.9980058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9980058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了一种深度自适应降噪自编码器网络(DeepADAENet)在实际用例中用于心电图(ECG)信号噪声消除的时频域性能。为了从有价值的数据中获得更高的分辨噪声,利用分数阶斯托克韦尔变换(FrST)将心电信号转换为时频图像。使用DeepADAENet对ECG的时频幅值进行噪声消除。然后利用逆first st将去噪后的时频心电信号返回到时域。此外,与其他ECG数据库相比,我们使用MIT-BID呼吸暂停-ECG数据库(Apnea-ECG)来准备数据集,因为它具有各种生理和记录。此外,利用MIT-BID噪声压力测试数据库(NSTDB)中的肌肉伪像(MA)、基线漂移(BW)和电极运动(EM)对这个干净的数据集进行噪声处理。非临床设备记录的心电信号比临床记录的噪声更大。因此,我们试图通过改变噪声源的系数和频率,使模拟的噪声信号接近真实。结果表明,与同类算法相比,DeepADAENet在信噪比(SNR)、均方根误差(RMSE)和均方根差(PRD)百分比方面表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Adaptive Denoising Auto-Encoder Networks for ECG Noise Cancellation via Time-Frequency Domain
In this paper, we study the performance of a deep adaptive denoising auto-encoder network (DeepADAENet) for electrocardiogram (ECG) signal noise cancelation in the time-frequency domain for practical use cases. In order to achieve a higher resolution in distinguishing the noise from valuable data, the fractional Stockwell transform (FrST) is exploited to convert the ECG to the time-frequency image. The magnitude of the time-frequency version of the ECG is noise-canceled using DeepADAENet. Then, inverse FrST is utilized to return the denoised time-frequency ECG into the time domain. Furthermore, we use the MIT-BID Apnea-ECG database (APNEA-ECG) for preparing the dataset due to various physiologies and records compared with other ECG databases. Moreover, muscle artifacts (MA), baseline wander (BW), and electrode motion (EM) from the MIT-BID Noise Stress Test Database (NSTDB) are utilized to make noisy this clean dataset. The ECG signals recorded by non-clinical devices contain more noise than clinical recording. Accordingly, by changing the coefficient and frequency of noise resources, we attempt to close the simulated noisy signal to reality. Results reveal the excellent performance of DeepADAENet compared with similar work in terms of signal-to-noise ratio (SNR), root mean square error (RMSE), and percent root mean square difference (PRD).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信