多机器人,多传感器,多环境事件数据集

Kenneth Chaney, Fernando Cladera Ojeda, Ziyun Wang, Anthony Bisulco, M. A. Hsieh, C. Korpela, Vijay R. Kumar, C. J. Taylor, Kostas Daniilidis
{"title":"多机器人,多传感器,多环境事件数据集","authors":"Kenneth Chaney, Fernando Cladera Ojeda, Ziyun Wang, Anthony Bisulco, M. A. Hsieh, C. Korpela, Vijay R. Kumar, C. J. Taylor, Kostas Daniilidis","doi":"10.1109/CVPRW59228.2023.00419","DOIUrl":null,"url":null,"abstract":"We present M3ED, the first multi-sensor event camera dataset focused on high-speed dynamic motions in robotics applications. M3ED provides high-quality synchronized and labeled data from multiple platforms, including ground vehicles, legged robots, and aerial robots, operating in challenging conditions such as driving along off-road trails, navigating through dense forests, and performing aggressive flight maneuvers. Our dataset also covers demanding operational scenarios for event cameras, such as scenes with high egomotion and multiple independently moving objects. The sensor suite used to collect M3ED includes high-resolution stereo event cameras (1280×720), grayscale imagers, an RGB imager, a high-quality IMU, a 64-beam LiDAR, and RTK localization. This dataset aims to accelerate the development of event-based algorithms and methods for edge cases encountered by autonomous systems in dynamic environments.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"M3ED: Multi-Robot, Multi-Sensor, Multi-Environment Event Dataset\",\"authors\":\"Kenneth Chaney, Fernando Cladera Ojeda, Ziyun Wang, Anthony Bisulco, M. A. Hsieh, C. Korpela, Vijay R. Kumar, C. J. Taylor, Kostas Daniilidis\",\"doi\":\"10.1109/CVPRW59228.2023.00419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present M3ED, the first multi-sensor event camera dataset focused on high-speed dynamic motions in robotics applications. M3ED provides high-quality synchronized and labeled data from multiple platforms, including ground vehicles, legged robots, and aerial robots, operating in challenging conditions such as driving along off-road trails, navigating through dense forests, and performing aggressive flight maneuvers. Our dataset also covers demanding operational scenarios for event cameras, such as scenes with high egomotion and multiple independently moving objects. The sensor suite used to collect M3ED includes high-resolution stereo event cameras (1280×720), grayscale imagers, an RGB imager, a high-quality IMU, a 64-beam LiDAR, and RTK localization. This dataset aims to accelerate the development of event-based algorithms and methods for edge cases encountered by autonomous systems in dynamic environments.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了M3ED,第一个多传感器事件相机数据集,专注于机器人应用中的高速动态运动。M3ED提供来自多个平台的高质量同步和标记数据,包括地面车辆,腿式机器人和空中机器人,在具有挑战性的条件下运行,例如沿着越野小径行驶,在茂密的森林中导航,以及执行激进的飞行机动。我们的数据集还涵盖了事件相机的苛刻操作场景,例如具有高自我情绪和多个独立移动物体的场景。用于收集M3ED的传感器套件包括高分辨率立体事件相机(1280×720)、灰度成像仪、RGB成像仪、高质量IMU、64光束激光雷达和RTK定位。该数据集旨在加速基于事件的算法和方法的开发,以应对动态环境中自治系统遇到的边缘情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M3ED: Multi-Robot, Multi-Sensor, Multi-Environment Event Dataset
We present M3ED, the first multi-sensor event camera dataset focused on high-speed dynamic motions in robotics applications. M3ED provides high-quality synchronized and labeled data from multiple platforms, including ground vehicles, legged robots, and aerial robots, operating in challenging conditions such as driving along off-road trails, navigating through dense forests, and performing aggressive flight maneuvers. Our dataset also covers demanding operational scenarios for event cameras, such as scenes with high egomotion and multiple independently moving objects. The sensor suite used to collect M3ED includes high-resolution stereo event cameras (1280×720), grayscale imagers, an RGB imager, a high-quality IMU, a 64-beam LiDAR, and RTK localization. This dataset aims to accelerate the development of event-based algorithms and methods for edge cases encountered by autonomous systems in dynamic environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信