线性和非线性半镇定的最优控制

Andrea L’Afflitto, W. Haddad, Qing Hui
{"title":"线性和非线性半镇定的最优控制","authors":"Andrea L’Afflitto, W. Haddad, Qing Hui","doi":"10.1109/ACC.2014.6859343","DOIUrl":null,"url":null,"abstract":"The state feedback linear-quadratic optimal control problem for asymptotic stabilization has been extensively studied in the literature. In this paper, the optimal linear and nonlinear control problem is extended to address a weaker version of closed-loop stability, namely, semistability, which involves convergent trajectories and Lyapunov stable equilibria and which is of paramount importance for consensus control of network dynamical systems. Specifically, we show that the optimal semistable state-feedback controller can be solved using a form of the Hamilton-Jacobi-Bellman conditions that does not require the cost-to-go function to be sign-definite. This result is then used to solve the optimal linear-quadratic regulator problem using a Riccati equation approach.","PeriodicalId":369729,"journal":{"name":"2014 American Control Conference","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Optimal control for linear and nonlinear semistabilization\",\"authors\":\"Andrea L’Afflitto, W. Haddad, Qing Hui\",\"doi\":\"10.1109/ACC.2014.6859343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The state feedback linear-quadratic optimal control problem for asymptotic stabilization has been extensively studied in the literature. In this paper, the optimal linear and nonlinear control problem is extended to address a weaker version of closed-loop stability, namely, semistability, which involves convergent trajectories and Lyapunov stable equilibria and which is of paramount importance for consensus control of network dynamical systems. Specifically, we show that the optimal semistable state-feedback controller can be solved using a form of the Hamilton-Jacobi-Bellman conditions that does not require the cost-to-go function to be sign-definite. This result is then used to solve the optimal linear-quadratic regulator problem using a Riccati equation approach.\",\"PeriodicalId\":369729,\"journal\":{\"name\":\"2014 American Control Conference\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2014.6859343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2014.6859343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

渐近镇定的状态反馈线性二次最优控制问题在文献中得到了广泛的研究。本文将最优线性和非线性控制问题推广到解决闭环稳定性的一个较弱版本,即半稳定性,它涉及收敛轨迹和Lyapunov稳定平衡点,这对于网络动力系统的一致控制至关重要。具体来说,我们证明了最优半稳定状态反馈控制器可以使用Hamilton-Jacobi-Bellman条件的一种形式来求解,该形式不需要代价函数是符号确定的。这一结果随后被用于求解最优线性二次型调节器问题,使用Riccati方程方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control for linear and nonlinear semistabilization
The state feedback linear-quadratic optimal control problem for asymptotic stabilization has been extensively studied in the literature. In this paper, the optimal linear and nonlinear control problem is extended to address a weaker version of closed-loop stability, namely, semistability, which involves convergent trajectories and Lyapunov stable equilibria and which is of paramount importance for consensus control of network dynamical systems. Specifically, we show that the optimal semistable state-feedback controller can be solved using a form of the Hamilton-Jacobi-Bellman conditions that does not require the cost-to-go function to be sign-definite. This result is then used to solve the optimal linear-quadratic regulator problem using a Riccati equation approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信