从机器的角度理解人类的衰老模式

Shixing Chen, Ming Dong, Jialiang Le, S. Barbat
{"title":"从机器的角度理解人类的衰老模式","authors":"Shixing Chen, Ming Dong, Jialiang Le, S. Barbat","doi":"10.1109/MIPR.2018.00055","DOIUrl":null,"url":null,"abstract":"Recent research shows that the aging patterns deeply learned from large-scale data lead to significant performance improvement on age estimation. However, the insight about why and how deep learning models achieved superior performance is inadequate. In this paper, we propose to analyze, visualize and understand the deep aging patterns. We first train a series of convolutional neural networks for age estimation, and then illustrate the learning outcomes using feature maps, activation histograms, and deconvolution. We also develop a visualization method that can compare the facial appearance and track its changes at different ages through the mapping between 2D images and a 3D face template. Our framework provides an innovative way to understand human facial aging process from a machine perspective.","PeriodicalId":320000,"journal":{"name":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Understanding Human Aging Patterns from a Machine Perspective\",\"authors\":\"Shixing Chen, Ming Dong, Jialiang Le, S. Barbat\",\"doi\":\"10.1109/MIPR.2018.00055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research shows that the aging patterns deeply learned from large-scale data lead to significant performance improvement on age estimation. However, the insight about why and how deep learning models achieved superior performance is inadequate. In this paper, we propose to analyze, visualize and understand the deep aging patterns. We first train a series of convolutional neural networks for age estimation, and then illustrate the learning outcomes using feature maps, activation histograms, and deconvolution. We also develop a visualization method that can compare the facial appearance and track its changes at different ages through the mapping between 2D images and a 3D face template. Our framework provides an innovative way to understand human facial aging process from a machine perspective.\",\"PeriodicalId\":320000,\"journal\":{\"name\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIPR.2018.00055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIPR.2018.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近的研究表明,从大规模数据中深度学习的老化模式可以显著提高年龄估计的性能。然而,关于深度学习模型为什么以及如何获得卓越性能的见解是不够的。在本文中,我们提出了分析、可视化和理解深层老化模式。我们首先训练一系列卷积神经网络用于年龄估计,然后使用特征图、激活直方图和反卷积来说明学习结果。我们还开发了一种可视化方法,可以通过2D图像与3D人脸模板之间的映射来比较面部外观并跟踪其在不同年龄的变化。我们的框架提供了一种从机器角度理解人类面部衰老过程的创新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Human Aging Patterns from a Machine Perspective
Recent research shows that the aging patterns deeply learned from large-scale data lead to significant performance improvement on age estimation. However, the insight about why and how deep learning models achieved superior performance is inadequate. In this paper, we propose to analyze, visualize and understand the deep aging patterns. We first train a series of convolutional neural networks for age estimation, and then illustrate the learning outcomes using feature maps, activation histograms, and deconvolution. We also develop a visualization method that can compare the facial appearance and track its changes at different ages through the mapping between 2D images and a 3D face template. Our framework provides an innovative way to understand human facial aging process from a machine perspective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信