紧类中绝对伸展量与单元的乘法几何

M. Zarichnyǐ
{"title":"紧类中绝对伸展量与单元的乘法几何","authors":"M. Zarichnyǐ","doi":"10.1070/SM1993V074N01ABEH003331","DOIUrl":null,"url":null,"abstract":"An investigation is made of the geometry of the multiplication mappings for monads whose functorial parts are (weakly) normal (in the sense of Shchepin) functors acting in the category of compacta. A characterization is obtained for a power monad as the only normal monad such that the multiplication mapping is soft for some \\omega_1$ SRC=http://ej.iop.org/images/0025-5734/74/1/A02/tex_sm_3331_img4.gif/>. It is proved that the multiplication mappings and of the inclusion hyperspace monad and the monad of complete chained systems are homeomorphic to trivial Tychonoff fibrations for openly generated continua that are homogeneous with respect to character.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ABSOLUTE EXTENSORS AND THE GEOMETRY OF MULTIPLICATION OF MONADS IN THE CATEGORY OF COMPACTA\",\"authors\":\"M. Zarichnyǐ\",\"doi\":\"10.1070/SM1993V074N01ABEH003331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An investigation is made of the geometry of the multiplication mappings for monads whose functorial parts are (weakly) normal (in the sense of Shchepin) functors acting in the category of compacta. A characterization is obtained for a power monad as the only normal monad such that the multiplication mapping is soft for some \\\\omega_1$ SRC=http://ej.iop.org/images/0025-5734/74/1/A02/tex_sm_3331_img4.gif/>. It is proved that the multiplication mappings and of the inclusion hyperspace monad and the monad of complete chained systems are homeomorphic to trivial Tychonoff fibrations for openly generated continua that are homogeneous with respect to character.\",\"PeriodicalId\":208776,\"journal\":{\"name\":\"Mathematics of The Ussr-sbornik\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of The Ussr-sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1070/SM1993V074N01ABEH003331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1993V074N01ABEH003331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了单元的函数部分在紧元范畴中为(弱)正规(在Shchepin意义上)函子的乘法映射的几何。我们得到了一个幂单子作为唯一的法线单子的特性,使得乘法映射对于某些\omega_1$ SRC=http://ej.iop.org/images/0025-5734/74/1/A02/tex_sm_3331_img4.gif/>是软的。证明了对于性质齐次的公开生成连续体,包含超空间单子和完全链系统单子的乘法映射与平凡Tychonoff纤振是同胚的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ABSOLUTE EXTENSORS AND THE GEOMETRY OF MULTIPLICATION OF MONADS IN THE CATEGORY OF COMPACTA
An investigation is made of the geometry of the multiplication mappings for monads whose functorial parts are (weakly) normal (in the sense of Shchepin) functors acting in the category of compacta. A characterization is obtained for a power monad as the only normal monad such that the multiplication mapping is soft for some \omega_1$ SRC=http://ej.iop.org/images/0025-5734/74/1/A02/tex_sm_3331_img4.gif/>. It is proved that the multiplication mappings and of the inclusion hyperspace monad and the monad of complete chained systems are homeomorphic to trivial Tychonoff fibrations for openly generated continua that are homogeneous with respect to character.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信