色情视频检测系统的实现

Zhiyi Qu, Liping Ren, A. Guo, Jing Yu
{"title":"色情视频检测系统的实现","authors":"Zhiyi Qu, Liping Ren, A. Guo, Jing Yu","doi":"10.1109/CISP.2009.5301633","DOIUrl":null,"url":null,"abstract":"Based on the features of video content, this paper addresses the system of detecting pornographic videos. The system makes use of an improved algorithm for shot segmentation based on clustering and then extracts key frames. It converts the detection of video to identification of key frames. We use the skin color detection to detect the key frames which have been extracted. The experimental results show that the method's correct detection is up to 80% and it is an effective method for detecting pornographic videos.","PeriodicalId":263281,"journal":{"name":"2009 2nd International Congress on Image and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Implementation of Pornographic Videos Detection System\",\"authors\":\"Zhiyi Qu, Liping Ren, A. Guo, Jing Yu\",\"doi\":\"10.1109/CISP.2009.5301633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the features of video content, this paper addresses the system of detecting pornographic videos. The system makes use of an improved algorithm for shot segmentation based on clustering and then extracts key frames. It converts the detection of video to identification of key frames. We use the skin color detection to detect the key frames which have been extracted. The experimental results show that the method's correct detection is up to 80% and it is an effective method for detecting pornographic videos.\",\"PeriodicalId\":263281,\"journal\":{\"name\":\"2009 2nd International Congress on Image and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Congress on Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2009.5301633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Congress on Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2009.5301633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文根据视频内容的特点,论述了淫秽视频的检测系统。该系统采用改进的基于聚类的镜头分割算法,提取关键帧。它将视频的检测转换为关键帧的识别。我们利用肤色检测对提取出来的关键帧进行检测。实验结果表明,该方法的检测正确率高达80%,是一种有效的色情视频检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Pornographic Videos Detection System
Based on the features of video content, this paper addresses the system of detecting pornographic videos. The system makes use of an improved algorithm for shot segmentation based on clustering and then extracts key frames. It converts the detection of video to identification of key frames. We use the skin color detection to detect the key frames which have been extracted. The experimental results show that the method's correct detection is up to 80% and it is an effective method for detecting pornographic videos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信