{"title":"如何找到相关的训练数据:一种成对引导的盲隐写分析方法","authors":"Pham Hai Dang Le, M. Franz","doi":"10.1109/WIFS.2012.6412654","DOIUrl":null,"url":null,"abstract":"Today, support vector machines (SVMs) seem to be the classifier of choice in blind steganalysis. This approach needs two steps: first, a training phase determines a separating hyperplane that distinguishes between cover and stego images; second, in a test phase the class membership of an unknown input image is detected using this hyperplane. As in all statistical classifiers, the number of training images is a critical factor: the more images that are used in the training phase, the better the steganalysis performance will be in the test phase, however at the price of a greatly increased training time of the SVM algorithm. Interestingly, only a few training data, the support vectors, determine the separating hyperplane of the SVM. In this paper, we introduce a paired bootstrapping approach specifically developed for the steganalysis scenario that selects likely candidates for support vectors. The resulting training set is considerably smaller, without a significant loss of steganalysis performance.","PeriodicalId":396789,"journal":{"name":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to find relevant training data: A paired bootstrapping approach to blind steganalysis\",\"authors\":\"Pham Hai Dang Le, M. Franz\",\"doi\":\"10.1109/WIFS.2012.6412654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, support vector machines (SVMs) seem to be the classifier of choice in blind steganalysis. This approach needs two steps: first, a training phase determines a separating hyperplane that distinguishes between cover and stego images; second, in a test phase the class membership of an unknown input image is detected using this hyperplane. As in all statistical classifiers, the number of training images is a critical factor: the more images that are used in the training phase, the better the steganalysis performance will be in the test phase, however at the price of a greatly increased training time of the SVM algorithm. Interestingly, only a few training data, the support vectors, determine the separating hyperplane of the SVM. In this paper, we introduce a paired bootstrapping approach specifically developed for the steganalysis scenario that selects likely candidates for support vectors. The resulting training set is considerably smaller, without a significant loss of steganalysis performance.\",\"PeriodicalId\":396789,\"journal\":{\"name\":\"2012 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS.2012.6412654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2012.6412654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How to find relevant training data: A paired bootstrapping approach to blind steganalysis
Today, support vector machines (SVMs) seem to be the classifier of choice in blind steganalysis. This approach needs two steps: first, a training phase determines a separating hyperplane that distinguishes between cover and stego images; second, in a test phase the class membership of an unknown input image is detected using this hyperplane. As in all statistical classifiers, the number of training images is a critical factor: the more images that are used in the training phase, the better the steganalysis performance will be in the test phase, however at the price of a greatly increased training time of the SVM algorithm. Interestingly, only a few training data, the support vectors, determine the separating hyperplane of the SVM. In this paper, we introduce a paired bootstrapping approach specifically developed for the steganalysis scenario that selects likely candidates for support vectors. The resulting training set is considerably smaller, without a significant loss of steganalysis performance.