如何找到相关的训练数据:一种成对引导的盲隐写分析方法

Pham Hai Dang Le, M. Franz
{"title":"如何找到相关的训练数据:一种成对引导的盲隐写分析方法","authors":"Pham Hai Dang Le, M. Franz","doi":"10.1109/WIFS.2012.6412654","DOIUrl":null,"url":null,"abstract":"Today, support vector machines (SVMs) seem to be the classifier of choice in blind steganalysis. This approach needs two steps: first, a training phase determines a separating hyperplane that distinguishes between cover and stego images; second, in a test phase the class membership of an unknown input image is detected using this hyperplane. As in all statistical classifiers, the number of training images is a critical factor: the more images that are used in the training phase, the better the steganalysis performance will be in the test phase, however at the price of a greatly increased training time of the SVM algorithm. Interestingly, only a few training data, the support vectors, determine the separating hyperplane of the SVM. In this paper, we introduce a paired bootstrapping approach specifically developed for the steganalysis scenario that selects likely candidates for support vectors. The resulting training set is considerably smaller, without a significant loss of steganalysis performance.","PeriodicalId":396789,"journal":{"name":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to find relevant training data: A paired bootstrapping approach to blind steganalysis\",\"authors\":\"Pham Hai Dang Le, M. Franz\",\"doi\":\"10.1109/WIFS.2012.6412654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, support vector machines (SVMs) seem to be the classifier of choice in blind steganalysis. This approach needs two steps: first, a training phase determines a separating hyperplane that distinguishes between cover and stego images; second, in a test phase the class membership of an unknown input image is detected using this hyperplane. As in all statistical classifiers, the number of training images is a critical factor: the more images that are used in the training phase, the better the steganalysis performance will be in the test phase, however at the price of a greatly increased training time of the SVM algorithm. Interestingly, only a few training data, the support vectors, determine the separating hyperplane of the SVM. In this paper, we introduce a paired bootstrapping approach specifically developed for the steganalysis scenario that selects likely candidates for support vectors. The resulting training set is considerably smaller, without a significant loss of steganalysis performance.\",\"PeriodicalId\":396789,\"journal\":{\"name\":\"2012 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS.2012.6412654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS.2012.6412654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,支持向量机(svm)似乎是盲隐写分析的首选分类器。该方法需要两个步骤:首先,在训练阶段确定一个分离超平面来区分覆盖和隐写图像;其次,在测试阶段,使用该超平面检测未知输入图像的类隶属度。与所有统计分类器一样,训练图像的数量是一个关键因素:在训练阶段使用的图像越多,在测试阶段的隐写分析性能越好,但代价是SVM算法的训练时间大大增加。有趣的是,只有少量的训练数据和支持向量决定了支持向量机的分离超平面。在本文中,我们介绍了一种专门为隐写分析场景开发的配对自举方法,该方法可以选择可能的候选支持向量。得到的训练集要小得多,但没有显著的隐写分析性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to find relevant training data: A paired bootstrapping approach to blind steganalysis
Today, support vector machines (SVMs) seem to be the classifier of choice in blind steganalysis. This approach needs two steps: first, a training phase determines a separating hyperplane that distinguishes between cover and stego images; second, in a test phase the class membership of an unknown input image is detected using this hyperplane. As in all statistical classifiers, the number of training images is a critical factor: the more images that are used in the training phase, the better the steganalysis performance will be in the test phase, however at the price of a greatly increased training time of the SVM algorithm. Interestingly, only a few training data, the support vectors, determine the separating hyperplane of the SVM. In this paper, we introduce a paired bootstrapping approach specifically developed for the steganalysis scenario that selects likely candidates for support vectors. The resulting training set is considerably smaller, without a significant loss of steganalysis performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信