Takiff超代数的半简单扩展的表示理论

Shun-Jen Cheng, K. Coulembier
{"title":"Takiff超代数的半简单扩展的表示理论","authors":"Shun-Jen Cheng, K. Coulembier","doi":"10.1093/IMRN/RNAB149","DOIUrl":null,"url":null,"abstract":"We study a semisimple extension of a Takiff superalgebra which turns out to have a remarkably rich representation theory. We determine the blocks in both the finite-dimensional and BGG module categories and also classify the Borel subalgebras. We further compute all extension groups between two finite-dimensional simple objects and prove that all non-principal blocks in the finite-dimensional module category are Koszul.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Representation Theory of a Semisimple Extension of the Takiff Superalgebra\",\"authors\":\"Shun-Jen Cheng, K. Coulembier\",\"doi\":\"10.1093/IMRN/RNAB149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a semisimple extension of a Takiff superalgebra which turns out to have a remarkably rich representation theory. We determine the blocks in both the finite-dimensional and BGG module categories and also classify the Borel subalgebras. We further compute all extension groups between two finite-dimensional simple objects and prove that all non-principal blocks in the finite-dimensional module category are Koszul.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了一个Takiff超代数的半简单扩展,它具有非常丰富的表示理论。我们确定了有限维和BGG模范畴中的块,并对Borel子代数进行了分类。我们进一步计算了两个有限维简单对象之间的所有可拓群,并证明了有限维模范畴中的所有非主块都是Koszul。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation Theory of a Semisimple Extension of the Takiff Superalgebra
We study a semisimple extension of a Takiff superalgebra which turns out to have a remarkably rich representation theory. We determine the blocks in both the finite-dimensional and BGG module categories and also classify the Borel subalgebras. We further compute all extension groups between two finite-dimensional simple objects and prove that all non-principal blocks in the finite-dimensional module category are Koszul.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信