{"title":"Takiff超代数的半简单扩展的表示理论","authors":"Shun-Jen Cheng, K. Coulembier","doi":"10.1093/IMRN/RNAB149","DOIUrl":null,"url":null,"abstract":"We study a semisimple extension of a Takiff superalgebra which turns out to have a remarkably rich representation theory. We determine the blocks in both the finite-dimensional and BGG module categories and also classify the Borel subalgebras. We further compute all extension groups between two finite-dimensional simple objects and prove that all non-principal blocks in the finite-dimensional module category are Koszul.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Representation Theory of a Semisimple Extension of the Takiff Superalgebra\",\"authors\":\"Shun-Jen Cheng, K. Coulembier\",\"doi\":\"10.1093/IMRN/RNAB149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a semisimple extension of a Takiff superalgebra which turns out to have a remarkably rich representation theory. We determine the blocks in both the finite-dimensional and BGG module categories and also classify the Borel subalgebras. We further compute all extension groups between two finite-dimensional simple objects and prove that all non-principal blocks in the finite-dimensional module category are Koszul.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/IMRN/RNAB149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Representation Theory of a Semisimple Extension of the Takiff Superalgebra
We study a semisimple extension of a Takiff superalgebra which turns out to have a remarkably rich representation theory. We determine the blocks in both the finite-dimensional and BGG module categories and also classify the Borel subalgebras. We further compute all extension groups between two finite-dimensional simple objects and prove that all non-principal blocks in the finite-dimensional module category are Koszul.