基于Voronoi地图构建和改进蚁群算法的无人机路径规划研究

Zhouhang Huang, Zhihao Zhang, Junyu Han, CanYu Huang, Hongmei Zhang
{"title":"基于Voronoi地图构建和改进蚁群算法的无人机路径规划研究","authors":"Zhouhang Huang, Zhihao Zhang, Junyu Han, CanYu Huang, Hongmei Zhang","doi":"10.1117/12.2685729","DOIUrl":null,"url":null,"abstract":"The traditional ant colony algorithm is prone to problems such as long search time and many turning points in the path when searching on the grid map. In this paper, a map modeling method is proposed, which combines Voronoi diagram to construct feasible paths and threat circle to describe obstacle areas. At the same time, the initial pheromone concentration of nodes is set differently, and the path is optimized by the point-by-point method. The experimental results show that the proposed method can effectively improve the ant colony algorithm and make it more suitable for UAV flight in battlefield environment.","PeriodicalId":305812,"journal":{"name":"International Conference on Electronic Information Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on UAV path planning based on Voronoi map construction and improved ant colony algorithm\",\"authors\":\"Zhouhang Huang, Zhihao Zhang, Junyu Han, CanYu Huang, Hongmei Zhang\",\"doi\":\"10.1117/12.2685729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional ant colony algorithm is prone to problems such as long search time and many turning points in the path when searching on the grid map. In this paper, a map modeling method is proposed, which combines Voronoi diagram to construct feasible paths and threat circle to describe obstacle areas. At the same time, the initial pheromone concentration of nodes is set differently, and the path is optimized by the point-by-point method. The experimental results show that the proposed method can effectively improve the ant colony algorithm and make it more suitable for UAV flight in battlefield environment.\",\"PeriodicalId\":305812,\"journal\":{\"name\":\"International Conference on Electronic Information Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2685729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的蚁群算法在网格地图上搜索时容易存在搜索时间长、路径拐点多等问题。本文提出了一种结合Voronoi图构造可行路径和威胁圈描述障碍物区域的映射建模方法。同时,设置不同节点的初始费洛蒙浓度,采用逐点法对路径进行优化。实验结果表明,该方法能有效地改进蚁群算法,使其更适合于无人机在战场环境下的飞行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on UAV path planning based on Voronoi map construction and improved ant colony algorithm
The traditional ant colony algorithm is prone to problems such as long search time and many turning points in the path when searching on the grid map. In this paper, a map modeling method is proposed, which combines Voronoi diagram to construct feasible paths and threat circle to describe obstacle areas. At the same time, the initial pheromone concentration of nodes is set differently, and the path is optimized by the point-by-point method. The experimental results show that the proposed method can effectively improve the ant colony algorithm and make it more suitable for UAV flight in battlefield environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信