{"title":"关于指数丢番图方程2x+15y=z2","authors":"S. Thongnak, W. Chuayjan, T. Kaewong","doi":"10.22457/apam.v26n1a01871","DOIUrl":null,"url":null,"abstract":"In this article, we solve the exponential Diophantine equation 2 2 15 x y + = z where x y, and z are non-negative integers. The basic theorems in Number theory are given and applied to find all solutions. The result reveals that there are only three solutions to the equation.","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Exponential Diophantine Equation 2x+15y=z2\",\"authors\":\"S. Thongnak, W. Chuayjan, T. Kaewong\",\"doi\":\"10.22457/apam.v26n1a01871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we solve the exponential Diophantine equation 2 2 15 x y + = z where x y, and z are non-negative integers. The basic theorems in Number theory are given and applied to find all solutions. The result reveals that there are only three solutions to the equation.\",\"PeriodicalId\":305863,\"journal\":{\"name\":\"Annals of Pure and Applied Mathematics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22457/apam.v26n1a01871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v26n1a01871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们解了指数丢芬图方程2 2 15 x y + = z,其中x y和z为非负整数。给出了数论中的基本定理,并将其应用于求所有解。结果表明,该方程只有三个解。
In this article, we solve the exponential Diophantine equation 2 2 15 x y + = z where x y, and z are non-negative integers. The basic theorems in Number theory are given and applied to find all solutions. The result reveals that there are only three solutions to the equation.