{"title":"2次布尔PTF的PRG,种子长度为次多项式,n为对数","authors":"D. Kane, Sankeerth Rao","doi":"10.4230/LIPIcs.CCC.2018.2","DOIUrl":null,"url":null,"abstract":"We construct and analyze a pseudorandom generator for degree 2 boolean polynomial threshold functions. Random constructions achieve the optimal seed length of [EQUATION], however the best known explicit construction of [8] uses a seed length of O(log n · ϵ−8). In this work we give an explicit construction that uses a seed length of [EQUATION]. Note that this improves the seed length substantially and that the dependence on the error ϵ is additive and only grows subpolynomially as opposed to the previously known multiplicative polynomial dependence. Our generator uses dimensionality reduction on a Nisan-Wigderson based pseudorandom generator given by Lu, Kabanets [18].","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A PRG for Boolean PTF of Degree 2 with Seed Length Subpolynomial in epsilon and Logarithmic in n\",\"authors\":\"D. Kane, Sankeerth Rao\",\"doi\":\"10.4230/LIPIcs.CCC.2018.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct and analyze a pseudorandom generator for degree 2 boolean polynomial threshold functions. Random constructions achieve the optimal seed length of [EQUATION], however the best known explicit construction of [8] uses a seed length of O(log n · ϵ−8). In this work we give an explicit construction that uses a seed length of [EQUATION]. Note that this improves the seed length substantially and that the dependence on the error ϵ is additive and only grows subpolynomially as opposed to the previously known multiplicative polynomial dependence. Our generator uses dimensionality reduction on a Nisan-Wigderson based pseudorandom generator given by Lu, Kabanets [18].\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2018.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2018.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A PRG for Boolean PTF of Degree 2 with Seed Length Subpolynomial in epsilon and Logarithmic in n
We construct and analyze a pseudorandom generator for degree 2 boolean polynomial threshold functions. Random constructions achieve the optimal seed length of [EQUATION], however the best known explicit construction of [8] uses a seed length of O(log n · ϵ−8). In this work we give an explicit construction that uses a seed length of [EQUATION]. Note that this improves the seed length substantially and that the dependence on the error ϵ is additive and only grows subpolynomially as opposed to the previously known multiplicative polynomial dependence. Our generator uses dimensionality reduction on a Nisan-Wigderson based pseudorandom generator given by Lu, Kabanets [18].