李代数的分类、守恒定律及Emden-Fowler方程泛化修正的不变解

G. Loaiza, Y. Acevedo, Oml Duque, D. G. Hernández
{"title":"李代数的分类、守恒定律及Emden-Fowler方程泛化修正的不变解","authors":"G. Loaiza, Y. Acevedo, Oml Duque, D. G. Hernández","doi":"10.15406/paij.2023.07.00280","DOIUrl":null,"url":null,"abstract":"We obtain the optimal system’s generating operators associated to a modification of the generalization of the Emden–Fowler Equation. Using those operators we characterize all invariant solutions associated to a generalized. Moreover, we present the variational symmetries and the corresponding conservation laws, using Noether’s theorem and Ibragimov’s method. Finally, we classify the Lie algebra associated to the given equation.","PeriodicalId":377724,"journal":{"name":"Physics & Astronomy International Journal","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie algebra classification, conservation laws and invariant solutions for modification of the generalization of the Emden–Fowler equation\",\"authors\":\"G. Loaiza, Y. Acevedo, Oml Duque, D. G. Hernández\",\"doi\":\"10.15406/paij.2023.07.00280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the optimal system’s generating operators associated to a modification of the generalization of the Emden–Fowler Equation. Using those operators we characterize all invariant solutions associated to a generalized. Moreover, we present the variational symmetries and the corresponding conservation laws, using Noether’s theorem and Ibragimov’s method. Finally, we classify the Lie algebra associated to the given equation.\",\"PeriodicalId\":377724,\"journal\":{\"name\":\"Physics & Astronomy International Journal\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics & Astronomy International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/paij.2023.07.00280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics & Astronomy International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/paij.2023.07.00280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对Emden-Fowler方程的推广进行了修正,得到了最优系统的生成算子。利用这些算子,我们刻画了与广义解相关的所有不变解。此外,我们还利用诺特定理和伊布拉吉莫夫方法给出了变分对称性及其相应的守恒律。最后,我们对给定方程的李代数进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lie algebra classification, conservation laws and invariant solutions for modification of the generalization of the Emden–Fowler equation
We obtain the optimal system’s generating operators associated to a modification of the generalization of the Emden–Fowler Equation. Using those operators we characterize all invariant solutions associated to a generalized. Moreover, we present the variational symmetries and the corresponding conservation laws, using Noether’s theorem and Ibragimov’s method. Finally, we classify the Lie algebra associated to the given equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信