残差u网卷积网络在MRI右心室分割中的应用

Zexiong Liu, Yuhong Feng, Xuan S. Yang
{"title":"残差u网卷积网络在MRI右心室分割中的应用","authors":"Zexiong Liu, Yuhong Feng, Xuan S. Yang","doi":"10.1109/PDCAT46702.2019.00072","DOIUrl":null,"url":null,"abstract":"Right ventricle (RV) segmentation is difficult due to the variable shape and ill-defined borders of the RV. In this paper, we propose a method to segment RV using a residual U-net convolutional network. A U-net shaped network structure is employed in our method to extract RV features in the encoding layers and make end-to-end decisions in the decoding layers. In the encoding layers, several residual blocks are cascaded extract RV features. In the decoding layers, convolutional layers are employed to make the RV predication. Our network is light with less parameters compared with state-of-art networks. Experiments on public datasets demonstrate that our network outperforms most existed automated segmentation method in respect of several commonly used evaluation measures.","PeriodicalId":166126,"journal":{"name":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Right Ventricle Segmentation of Cine MRI Using Residual U-net Convolutinal Networks\",\"authors\":\"Zexiong Liu, Yuhong Feng, Xuan S. Yang\",\"doi\":\"10.1109/PDCAT46702.2019.00072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Right ventricle (RV) segmentation is difficult due to the variable shape and ill-defined borders of the RV. In this paper, we propose a method to segment RV using a residual U-net convolutional network. A U-net shaped network structure is employed in our method to extract RV features in the encoding layers and make end-to-end decisions in the decoding layers. In the encoding layers, several residual blocks are cascaded extract RV features. In the decoding layers, convolutional layers are employed to make the RV predication. Our network is light with less parameters compared with state-of-art networks. Experiments on public datasets demonstrate that our network outperforms most existed automated segmentation method in respect of several commonly used evaluation measures.\",\"PeriodicalId\":166126,\"journal\":{\"name\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT46702.2019.00072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT46702.2019.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

右心室(RV)由于形状多变和边界不明确,分割是困难的。本文提出了一种利用残差U-net卷积网络分割RV的方法。该方法采用u型网络结构,在编码层提取RV特征,在解码层进行端到端决策。在编码层中,将多个残差块级联提取RV特征。在解码层中,采用卷积层进行RV预测。与最先进的网络相比,我们的网络重量轻,参数少。在公共数据集上的实验表明,在几种常用的评价指标方面,我们的网络优于大多数现有的自动分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Right Ventricle Segmentation of Cine MRI Using Residual U-net Convolutinal Networks
Right ventricle (RV) segmentation is difficult due to the variable shape and ill-defined borders of the RV. In this paper, we propose a method to segment RV using a residual U-net convolutional network. A U-net shaped network structure is employed in our method to extract RV features in the encoding layers and make end-to-end decisions in the decoding layers. In the encoding layers, several residual blocks are cascaded extract RV features. In the decoding layers, convolutional layers are employed to make the RV predication. Our network is light with less parameters compared with state-of-art networks. Experiments on public datasets demonstrate that our network outperforms most existed automated segmentation method in respect of several commonly used evaluation measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信